当前位置: 首页 > news >正文

网站四对联广告代码百度权重划分等级

网站四对联广告代码,百度权重划分等级,无备案网站 阿里联盟,网站建设公司盈利分析排序算法是数据结构与算法中最基本的算法之一,其作用就是将一些可以比较大小的数据进行有规律的排序,而想要实现这种排序就拥有很多种方法~ 📚 非线性时间比较类: 那么我将通过几篇文章,将排序算法中各种算法细化的&a…

排序算法是数据结构与算法中最基本的算法之一,其作用就是将一些可以比较大小的数据进行有规律的排序,而想要实现这种排序就拥有很多种方法~

📚 非线性时间比较类

那么我将通过几篇文章,将排序算法中各种算法细化的,详尽的为大家呈现出来:

📕 插入类排序:数据结构与算法之排序算法-插入排序-CSDN博客

📖 直接插入排序

📖 希尔排序

📕 交换类排序:数据结构与算法之排序算法-快速排序(分治)-CSDN博客

📖 冒泡排序

📖 冒泡排序-优化

📖 快速排序(Hoare,挖坑法,前后指针法)

📖 快速排序-优化

📕 选择类排序:数据结构与算法之排序算法-选择排序-CSDN博客

📖 简单选择排序

📖 堆排序

📕 归并类排序:数据结构与算法之排序算法-归并排序-CSDN博客

📖 归并排序

📚 线性时间非比较

📕 非比较类排序:[本篇]

📖 计数排序

📖 桶排序

📖 基数排序

一、计数排序

稳定性:稳定

时间复杂度:O(n + m)

额外空间复杂度:O(n + m)

大家应该也注意到了,这次学习到的排序算法,不仅具有稳定性,时间复杂度竟然还趋近O(n)!这是相当快的一种排序算法了。

那么为什么它能达到这么优秀的时间复杂度呢?主要就是因为它并不需要对元素之间进行比较~那么有人可能就要发出疑问,不进行比较又如何知道元素与元素间的大小关系呢?

① 计数排序

📚 算法思想

计数排序的基本思想把原数组元素作为数组的下标,创建一个临时数组 arr,使得 arr 至少能将原数组中所有数据都存入数组中。

然后遍历原数组,将遍历到的元素与 arr 下标进行匹配,并使 arr[index]++,代表该数字出现的次数 +1,而将数组遍历结束后,arr 从 start 下标到 end 下标存储的数据正好由下标默认排序好了,并且数据也准确的存到了正确位置~

了解了计数排序的基本思想后,大家或许也知道了为什么它的速度如此之快,相应的,大家应该也能理解为什么它没有"快速排序","归并排序"那么实用了,那就是"额外空间复杂度太高"

图示

📖 代码示例

    public static void countingSort(int[] array) {int max = array[0];for (int i = 1; i < array.length; i++) {if (array[i] > max) {max = array[i];}}int[] arr = new int[max + 1];for (int i = 0; i < array.length; i++) {int index = array[i];arr[index]++;}int k = 0;for (int i = 0; i < arr.length; i++) {while (arr[i] != 0) {array[k] = i;arr[i]--;k++;}}}

② 计数排序(优化)

上述代码中,我们简单实现了计数排序,但是这样是有缺点的

📕 当数组中元素过大:如 [5000,5005,5010],如果创建一个大小为 5011 的数组,那么浪费的空间就会特别大。

📕 当数组中存在负数:如 [1,2,3,-1],创建数组后,是搜索不到 ' -1 ' 下标的。

📚 算法思想

在原来的基础上,同时算出数组中的最小值,创建一个大小为[max - min + 1]的数组,这样就能有效的降低额外空间的损耗。

并且放入和取出元素时,寻找的下标也相应变成 arr[index] - min ,这样就能够彻底避免访问下标小于0的非法访问。

📖 代码示例

    public static void countingSort(int[] array) {int max = array[0];int min = array[0];for (int i = 1; i < array.length; i++) {if (array[i] > max) {max = array[i];}if (array[i] < min) {min = array[i];}}int[] arr = new int[max - min + 1];for (int i = 0; i < array.length; i++) {int index = array[i] - min;arr[index]++;}int k = 0;for (int i = 0; i < arr.length; i++) {while (arr[i] != 0) {array[k] = i + min;arr[i]--;k++;}}}

③ 效率测试

顺便一提,快速排序达到的速度为40ms左右,归并排序达到的速度为30ms左右~

二、桶排序

稳定性:稳定

时间复杂度:O(n)

额外空间复杂度:O(m)

上面的计数排数,很快倒是很快,但是它也有相应的缺点

📕 无法对浮点型数据进行排序,因为无法通过浮点型数据查找对应下标

这个算法属于计数排序的一种升级版,它的思想和计数排序类似,也是通过数据的值进行分类。

但它和计数排序也有些不同

📕 它并没有通过数据的值来直接对应下标,而是通过创建一些"桶",并且为它们设定"区间",从而通过数据查找对应区间,这样就能够避免"浮点数非法查找下标"的问题了。

① 桶排序

📚 算法思想

桶排序的基本思想根据原数组的最大值 max 和最小值 min 来划分区间,由这些区间来创造一些"桶"。而每一个桶代表一个区间范围,里面可以承载一个或多个元素。

创建好"桶"后,遍历原数组,将数组中的数据放到对应区间的桶中,然后再分别将桶中的元素排序,这样排好序后,就能够得到我们最终想要的有序数组了。

图示

📖 代码示例

    public static double[] bucketSort(double[] array) {//取最大值和最小值,并求出差值int len = array.length;double max = array[0];double min = array[0];for (int i = 1; i < len; i++) {max = Math.max(array[i], max);min = Math.min(array[i], min);}double d = max - min;//创建桶int bucketNum = len;ArrayList<LinkedList<Double>> bucketList = new ArrayList<LinkedList<Double>>(bucketNum);for(int i = 0;i < bucketNum;i++){bucketList.add(new LinkedList<Double>());}//将数组元素放入桶中for(int i = 0;i < len;i++){int num = (int)((array[i] - min) * (bucketNum - 1) / d);bucketList.get(num).add(array[i]);}//对每个桶进行排序for(int i = 0;i < bucketList.size();i++){Collections.sort(bucketList.get(i));}double[] sortArr = new double[len];int index = 0;for(LinkedList<Double> list:bucketList){for(double element: list){sortArr[index++] = element;}}return sortArr;}

三、基数排序

稳定性:稳定

时间复杂度:O(n * k)

额外空间复杂度:O(n * k)

① 基数排序

📚 算法思想

基数排序的基本思想基数排序的算法思想是,将整数按照位数分别切割成不同的数字。

当每次将数组中的数据按位数分割结束后,分别放入以位数为单位的"桶"中。

然后遍历桶,按照顺序将元素取出,再重新进行分割,入桶等操作,直到分割位数的次数达到了数组中位数最高的元素的限制,排序结束。

📖 代码示例

        public static int[] radioSort(int[] arr) {if(arr == null || arr.length < 2) return arr;int n = arr.length;int max = arr[0];// 找出最大值,计算最大值是几位数for (int i = 1; i < n; i++) {if(max < arr[i]) max = arr[i];}int num = 1;while (max / 10 > 0) {num++;max = max / 10;}// 创建10个桶ArrayList<LinkedList<Integer>> bucketList = new ArrayList<>(10);for (int i = 0; i < 10; i++) {bucketList.add(new LinkedList<Integer>());}// 进行排序for (int i = 1; i <= num; i++) {for (int j = 0; j < n; j++) {int radio = (arr[j] / (int)Math.pow(10,i-1)) % 10;bucketList.get(radio).add(arr[j]);}int k = 0;for (int j = 0; j < 10; j++) {for (Integer t : bucketList.get(j)) {arr[k++] = t;}}}return arr;}

那么这篇关于计数排序,桶排序,基数排序的文章到这里就结束啦,作者能力有限,如果有哪里说的不够清楚或者不够准确,还请各位在评论区多多指出,我也会虚心学习的,我们下次再见啦

http://www.khdw.cn/news/23556.html

相关文章:

  • 住房和城乡建设部是国家认定网站吗培训机构招生方案范文
  • 如何制作自己的网站图?网络推广方法大全
  • 怎么简单攻击一个网站最新新闻热点事件2023
  • 半岛晨报大连最新疫情徐州网页关键词优化
  • 怎么做简易网页无锡网站seo
  • 保定网站设计多少钱免费大数据分析网站
  • 镇江网站建设推广公司网络营销推广seo
  • 链家网站开发网络搜索优化
  • 网站改版 百度网络推广怎么样
  • 视频网站开发技术百度seo排名优化系统
  • c 做网站代发关键词排名包收录
  • wordpress 延迟加载插件seo技术培训泰州
  • 做网站怎么推广收益大南京seo优化公司
  • 如何做网站关键词电商培训内容
  • 网站建设 主要内容重大新闻事件2023
  • 建设网站需要多少钱济南兴田德润地址百度经验app
  • cc域名网站网站的优化从哪里进行
  • google 网站优化工具选择一个产品做营销方案
  • 网站的标签怎么修改百度搜索引擎优化公司哪家强
  • 全国最缺工100个职业表seo网站优化专家
  • 网站建设需要什么软件有哪些武汉seo工作室
  • 湖州市交通建设管理局网站seo北京网站推广
  • 网站后台 不能删除文章手机优化软件哪个好
  • 品牌网站开发设计百度域名提交收录网址
  • 要建一个网站怎么做安徽网络seo
  • 兰州交通发展建设集团公司网站网络营销ppt讲解
  • 电话销售做网站认证做网站公司哪家正规
  • 环保工程东莞网站建设网站建站流程
  • 网页版梦幻西游兑换码最新百度seo优化按年收费
  • 做头像的网站空白百度统计流量研究院