当前位置: 首页 > news >正文

装修设计效果图免费软件长沙seo排名公司

装修设计效果图免费软件,长沙seo排名公司,云南做网站需要多少钱,东莞做网站哪家最好【深度学习】gan网络原理生成对抗网络 GAN的基本思想源自博弈论你的二人零和博弈,由一个生成器和一个判别器构成,通过对抗学习的方式训练,目的是估测数据样本的潜在分布并生成新的数据样本。 1.下载数据并对数据进行规范 transform tran…

【深度学习】gan网络原理生成对抗网络

GAN的基本思想源自博弈论你的二人零和博弈,由一个生成器和一个判别器构成,通过对抗学习的方式训练,目的是估测数据样本的潜在分布并生成新的数据样本。
在这里插入图片描述

1.下载数据并对数据进行规范

transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(0.5 , 0.5)
])
train_ds = torchvision.datasets.MNIST('data', train=True, transform=transform, download=True)
dataloader = torch.utils.data.DataLoader(train_ds, batch_size=64, shuffle=True)

下载MNIST数据集,并对数据进行规范化。transforms.Compose 是用于定义一系列数据变换的类,ToTensor() 将图像转换为PyTorch张量,Normalize(0.5, 0.5) 对张量进行归一化。然后,创建一个 DataLoader,它将数据集划分成小批次,使得在训练时更容易处理。

2.生成器的代码

class Generator(nn.Module):def __init__(self):super(Generator, self).__init__()self.main = nn.Sequential(nn.Linear(100, 256),nn.ReLU(),nn.Linear(256, 512),nn.ReLU(),nn.Linear(512, 28*28),nn.Tanh())def forward(self, x):img = self.main(x)img = img.reshape(-1, 28, 28)return img

这一部分定义了生成器的神经网络模型。生成器的输入是一个大小为100的随机向量,通过多个线性层和激活函数(ReLU),最后通过 nn.Tanh() 激活函数生成大小为28x28的图像。forward 方法定义了前向传播的过程。

3.判别器的代码

class Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()self.main = nn.Sequential(nn.Linear(28*28, 512),nn.LeakyReLU(),nn.Linear(512, 256),nn.LeakyReLU(),nn.Linear(256, 1),nn.Sigmoid())def forward(self, x):x = x.view(-1, 28*28)x = self.main(x)return x

这一部分定义了判别器的神经网络模型。判别器的输入是28x28大小的图像,通过多个线性层和激活函数(LeakyReLU),最后通过 nn.Sigmoid() 激活函数输出一个0到1之间的值,表示输入图像是真实图像的概率。

4. 定义损失函数和优化函数

device = 'cuda' if torch.cuda.is_available() else 'cpu'
gen = Generator().to(device)
dis = Discriminator().to(device)
gen_opt = optim.Adam(gen.parameters(), lr=0.0001)
dis_opt = optim.Adam(dis.parameters(), lr=0.0001)
loss_fn = torch.nn.BCELoss()

这一部分设置了设备(GPU或CPU)、初始化了生成器和判别器的实例,并定义了优化器(Adam优化器)和损失函数(二分类交叉熵损失)。将生成器和判别器移动到设备上进行加速计算。

5.定义绘图函数

def gen_img_plot(model,test_input):prediction = np.squeeze(model(test_input).detach().cpu().numpy())fig = plt.figure(figsize=(4, 4))for i in range(16):plt.subplot(4, 4, i+1)plt.imshow((prediction[i]+1)/2)plt.axis('off')plt.show()

6. 开始训练,并显示出生成器所产生的图像

test_input = torch.randn(16, 100, device=device)
D_loss = []
G_loss = []
for epoch in range(30):d_epoch_loss = 0g_epoch_loss = 0count = len(dataloader)for step, (img, _) in enumerate(dataloader):img = img.to(device)               # 获得用于训练的mnist图像size = img.size(0)                 # 获得1批次数据量大小# 随机生成size个100维的向量样本值,也即是噪声,用于输入生成器 生成 和mnist一样的图像数据random_noise = torch.randn(size, 100, device=device)########################### 先训练判别器 #############################dis_opt.zero_grad()real_output = dis(img)d_real_loss = loss_fn(real_output, torch.ones_like(real_output))  # 真实值的loss,也即是真图片与1标签的损失d_real_loss.backward()gen_img = gen(random_noise)fake_output = dis(gen_img.detach())d_fake_loss = loss_fn(fake_output, torch.zeros_like(fake_output)) # 假的值的loss,也即是生成的图像与0标签的损失d_fake_loss.backward()d_loss = d_real_loss + d_fake_lossdis_opt.step()########################### 下面再训练生成器 #############################gen_opt.zero_grad()fake_output = dis(gen_img)g_loss = loss_fn(fake_output, torch.ones_like(fake_output))g_loss.backward()gen_opt.step()#########################################################################with torch.no_grad():d_epoch_loss += d_lossg_epoch_loss += g_loss
with torch.no_grad():d_epoch_loss /= countg_epoch_loss /= countD_loss.append(d_epoch_loss)G_loss.append(g_epoch_loss)print('epoch:', epoch)gen_img_plot(gen, test_input)

1.设置 test_input 作为模型的输入,并初始化用于存储判别器(D)和生成器(G)的损失值的列表。

2.开始 30 轮次的训练循环。在每一轮中:

3.对数据集进行遍历。每次迭代,加载一批图像数据 (img)。

4.将图像数据移动到设备(device)上,并获取批次大小。

5.生成随机噪声,作为输入给生成器。

6.训练判别器(D):

  • 对真实图像计算判别器的损失 (d_real_loss),并反向传播计算梯度。
  • 生成生成器产生的图像,并计算判别器的对这些生成图像的损失 (d_fake_loss),再反向传播计算梯度。
  • 计算总的判别器损失 d_loss,并更新判别器的参数。

7.训练生成器(G):

  • 生成器生成图像,并将其输入到判别器中,计算生成器的损失 (g_loss),并反向传播计算梯度。
  • 更新生成器的参数。

这个过程是 GAN 中交替训练生成器和判别器的典型过程,目的是让生成器生成逼真的图像,同时让判别器能够准确区分真假图像。

http://www.khdw.cn/news/21871.html

相关文章:

  • 做外贸找客户最好用的网站对网站外部的搜索引擎优化
  • 男人女人做性关系网站你对网络营销的理解
  • 网站开发与建设会计分录爱站网影院
  • 游戏开发网站开发广州谷歌seo公司
  • 潍坊企业建站系统百度首页登录入口
  • 少儿类网站怎么做seo sem论坛
  • 北京市住房与城乡建设 委员会网站seo的内容有哪些
  • 莆田seo建站win7优化教程
  • 南宁网站建设排名qq群排名优化软件购买
  • 高级网站开发工程师工资联盟营销平台
  • 做网站需要备案几次百度seo推广优化
  • 唐山做网站建设的公司创建网站免费注册
  • wordpress时尚英文站百度投诉中心在线申诉
  • 做网站漯河关键词排名查询工具有哪些
  • 程序员做笔记的网站搜索引擎入口官网
  • 贸易公司寮步网站建设价钱如何打百度人工电话
  • 招聘网站数建设seo专业培训seo专业培训
  • 做分析图网站西安网站建设维护
  • 信阳企业网站建设公司汕头seo收费
  • 鞍山做网站的公司百度投诉中心人工电话
  • 怎么在社保网站上做员工减少福州百度关键词优化
  • 新网网站后台登陆如何实施网站推广
  • wordpress网站资源南京百度seo
  • 岳阳有哪几家做网站的百度推广账户优化方案
  • 汕头论坛网网站搜索引擎优化诊断
  • 网站开发的分录怎么做武汉软件测试培训机构排名
  • wordpress =一键关键词优化
  • 本网站服务器设在美国服务器保护广告设计需要学什么
  • 聊城做网站费用价格网站排行
  • 微信分销小程序开发南宁排名seo公司