当前位置: 首页 > news >正文

动漫制作专业好不好常州seo排名收费

动漫制作专业好不好,常州seo排名收费,网站做任务领红包靠谱吗,建设一个功能简单的网站🎯要点 谱图神经网络计算注意力分数对比图神经网络、卷积网络和图注意力网络药物靶标建模学习和预测相互作用腹侧和背侧皮质下结构手写字体字符序列文本识别组织病理学图像分析长短期记忆财务模式预测相关性生物医学图像特征学习和迭代纠正 Python注意力机制 对…

🎯要点

  1. 谱图神经网络
  2. 计算注意力分数
  3. 对比图神经网络、卷积网络和图注意力网络
  4. 药物靶标建模学习和预测相互作用
  5. 腹侧和背侧皮质下结构
  6. 手写字体字符序列文本识别
  7. 组织病理学图像分析
  8. 长短期记忆财务模式预测相关性
  9. 生物医学图像特征学习和迭代纠正
    在这里插入图片描述

Python注意力机制

对于图卷积网络,图卷积运算产生邻居节点特征的归一化和。
h i ( l + 1 ) = σ ( ∑ j ∈ N ( i ) 1 c i j W ( l ) h j ( l ) ) h_i^{(l+1)}=\sigma\left(\sum_{j \in N (i)} \frac{1}{c_{i j}} W^{(l)} h_j^{(l)}\right) hi(l+1)=σ jN(i)cij1W(l)hj(l)
其中 N ( i ) N (i) N(i) 是其一跳邻居的集合(要在集合中包含 v i v_i vi,只需向每个节点添加一个自循环), c i j = ∣ N ( i ) ∣ ∣ N ( j ) ∣ c_{i j}=\sqrt{| N (i)|} \sqrt{| N (j)|} cij=N(i) N(j) 是基于图结构的归一化常数, σ \sigma σ 是激活函数(图卷积网络使用 ReLU), W ( l ) W^{(l)} W(l) 是节点级特征的共享权重矩阵转变。

图注意力网络引入了注意力机制来替代静态归一化卷积运算。下面是根据层 l l l 的嵌入计算层 l + 1 l+1 l+1 的节点嵌入 h i ( l + 1 ) h_i^{(l+1)} hi(l+1) 的方程。
在这里插入图片描述
z i ( l ) = W ( l ) h i ( l ) ( 1 ) z_i^{(l)}=W^{(l)} h_i^{(l)}\qquad(1) zi(l)=W(l)hi(l)(1)

e i j ( l ) = LeakyReLU ⁡ ( a ⃗ ( l ) T ( z i ( l ) ∥ z j ( l ) ) ) ( 2 ) e_{i j}^{(l)}=\operatorname{LeakyReLU}\left(\vec{a}^{(l)^T}\left(z_i^{(l)} \| z_j^{(l)}\right)\right)\qquad(2) eij(l)=LeakyReLU(a (l)T(zi(l)zj(l)))(2)

α i j ( l ) = exp ⁡ ( e i j ( l ) ) ∑ k ∈ N ( i ) exp ⁡ ( e i k ( l ) ) ( 3 ) \alpha_{i j}^{(l)}=\frac{\exp \left(e_{i j}^{(l)}\right)}{\sum_{k \in N (i)} \exp \left(e_{i k}^{(l)}\right)}\qquad(3) αij(l)=kN(i)exp(eik(l))exp(eij(l))(3)

h i ( l + 1 ) = σ ( ∑ j ∈ N ( i ) α i j ( l ) z j ( l ) ) ( 4 ) h_i^{(l+1)}=\sigma\left(\sum_{j \in N (i)} \alpha_{i j}^{(l)} z_j^{(l)}\right)\qquad(4) hi(l+1)=σ jN(i)αij(l)zj(l) (4)

方程(1)是下层嵌入 h i ( l ) h_i^{(l)} hi(l)的线性变换, W ( l ) W^{(l)} W(l)是其可学习的权重矩阵。方程(2)计算两个邻居之间的成对非标准化注意力得分。

方程 1:

def edge_attention(self, edges):z2 = torch.cat([edges.src['z'], edges.dst['z']], dim=1)a = self.attn_fc(z2)return {'e' : F.leaky_relu(a)}

方程 2:

def edge_attention(self, edges):z2 = torch.cat([edges.src['z'], edges.dst['z']], dim=1)a = self.attn_fc(z2)return {'e' : F.leaky_relu(a)}

在这里,它首先连接两个节点的 z z z 嵌入,其中 ||表示串联,然后取它和可学习权重向量 a ⃗ ( l ) \vec{a}^{(l)} a (l) 的点积,最后应用 LeakyReLU。这种形式的注意力通常称为附加注意力,与 Transformer 模型中的点积注意力形成对比。方程(3)应用 softmax 来标准化每个节点传入边上的注意力分数。方程(4)与图卷积网络类似。来自邻居的嵌入被聚合在一起,并按注意力分数进行缩放。

方程 3 和 4:

def reduce_func(self, nodes):alpha = F.softmax(nodes.mailbox['e'], dim=1)h = torch.sum(alpha * nodes.mailbox['z'], dim=1)return {'h' : h}

图注意力网络引入多头注意力来丰富模型容量并稳定学习过程。每个注意力头都有自己的参数,它们的输出可以通过两种方式合并:
h i ( l + 1 ) = ∥ k = 1 K σ ( ∑ j ∈ N ( i ) α i j k W k h j ( l ) ) h_i^{(l+1)}=\|_{k=1}^K \sigma\left(\sum_{j \in N (i)} \alpha_{i j}^k W^k h_j^{(l)}\right) hi(l+1)=k=1Kσ jN(i)αijkWkhj(l)

h i ( l + 1 ) = σ ( 1 K ∑ k = 1 K ∑ j ∈ N ( i ) α i j k W k h j ( l ) ) h_i^{(l+1)}=\sigma\left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in N (i)} \alpha_{i j}^k W^k h_j^{(l)}\right) hi(l+1)=σ K1k=1KjN(i)αijkWkhj(l)

class MultiHeadLayer(nn.Module):def __init__(self, g, in_dim, out_dim, num_heads, merge='cat'):super(MultiHeadLayer, self).__init__()self.heads = nn.ModuleList()for i in range(num_heads):self.heads.append(Layer(g, in_dim, out_dim))self.merge = mergedef forward(self, h):head_outs = [attn_head(h) for attn_head in self.heads]if self.merge == 'cat':return torch.cat(head_outs, dim=1)else:return torch.mean(torch.stack(head_outs))

定义两层注意力模型

class TAM(nn.Module):def __init__(self, g, in_dim, hidden_dim, out_dim, num_heads):super(TAM, self).__init__()self.layer1 = MultiHeadLayer(g, in_dim, hidden_dim, num_heads)self.layer2 = MultiHeadLayer(g, hidden_dim * num_heads, out_dim, 1)def forward(self, h):h = self.layer1(h)h = F.elu(h)h = self.layer2(h)return h

加载数据集

from xl import Graph
from xl.data import citation_graph as citegrh
import networkx as nxdef load_cora_data():data = citegrh.load_cora()features = torch.FloatTensor(data.features)labels = torch.LongTensor(data.labels)mask = torch.BoolTensor(data.train_mask)g = Graph(data.graph)return g, features, labels, mask

训练

import time
import numpy as npg, features, labels, mask = load_cora_data()net = TAM(g,in_dim=features.size()[1],hidden_dim=8,out_dim=7,num_heads=2)optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)dur = []
for epoch in range(30):if epoch >= 3:t0 = time.time()logits = net(features)logp = F.log_softmax(logits, 1)loss = F.nll_loss(logp[mask], labels[mask])optimizer.zero_grad()loss.backward()optimizer.step()if epoch >= 3:dur.append(time.time() - t0)print("Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f}".format(epoch, loss.item(), np.mean(dur)))

👉更新:亚图跨际

http://www.khdw.cn/news/21167.html

相关文章:

  • 做网站待遇哪些网站可以免费发广告
  • 聊城网站建设哪家专业营销最好的方法
  • 动态域名可以做网站吗百度推广登录首页官网
  • 自己的网站打不开了线上宣传方式有哪些
  • 网站后台密码如何破解湖南有实力seo优化哪家好
  • 手机网站跟pc网站有什么不同浏览器打开
  • 国家工商网站查询百度一级代理商
  • 长春谁家做网站发表文章的平台有哪些
  • qq客服代码放在wordpress那里seo权重查询
  • 武汉文理学院机电与建筑工程网站百度热搜的含义
  • 领动做的网站怎么样百度竞价推广投放
  • 汕头网站设计制作公司今天的重要新闻
  • 青岛网站建设设计html网页制作模板代码
  • 网博士自助建站系统下载百度搜索大数据
  • 铜陵app网站做招聘百度推广软件
  • wordpress图标字体不显示湖南专业的关键词优化
  • 建筑网片厂家直销seo工作内容
  • jsp怎么做视频网站搜索热词排名
  • 软装设计师培训seo排名优化代理
  • 手机社交网站模板数字化营销
  • 股票订阅网站开发怎么建立网站平台
  • 贵阳能做网站的公司有哪些中国网络推广网站排名
  • 网站的虚拟人怎么做的关键词排名快照优化
  • 大陆做爰视频网站seo技术培训宁波
  • 番禺外贸型网站建设网级移动营销app下载
  • 网站开发优势合肥网站建设公司
  • 网站后期维护seo搜索推广费用多少
  • 做网站选择哪家运营商百度识图在线网页版
  • 烟草许可证每年做证去那个网站seo基础课程
  • 网站开发工程师需要具备的综合素质武汉网站搜索引擎优化