当前位置: 首页 > news >正文

急招二级建造师长沙搜索排名优化公司

急招二级建造师,长沙搜索排名优化公司,公司用wordpress6,女生适合前端还是后端图像预处理 1.需要将图像Resize到相同大小输入到卷积网络中 2.翻转、裁剪、色彩偏移等操作 3.转化为Tensor数据格式 4.对RGB三种颜色通道进行标准化 data_transforms {train: transforms.Compose([transforms.Resize([96, 96]),transforms.RandomRotation(45),#随机旋转&…

图像预处理

1.需要将图像Resize到相同大小输入到卷积网络中
2.翻转、裁剪、色彩偏移等操作
3.转化为Tensor数据格式
4.对RGB三种颜色通道进行标准化

data_transforms = {'train': transforms.Compose([transforms.Resize([96, 96]),transforms.RandomRotation(45),#随机旋转,-45到45度之间随机选transforms.CenterCrop(64),#从中心开始裁剪transforms.RandomHorizontalFlip(p=0.5),#随机水平翻转 选择一个概率概率transforms.RandomVerticalFlip(p=0.5),#随机垂直翻转transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),#参数1为亮度,参数2为对比度,参数3为饱和度,参数4为色相transforms.RandomGrayscale(p=0.025),#概率转换成灰度率,3通道就是R=G=Btransforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])#均值,标准差]),'valid': transforms.Compose([transforms.Resize([64, 64]),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
}

读取数据

将训练集中各个类别文件夹中的数据经过Transforms增强后进行统一读取封装

image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'valid']}
batch_size = 128image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'valid']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ['train', 'valid']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'valid']}
class_names = image_datasets['train'].classes

迁移学习

使用官方发布的模型和参数,将参数冻住不更新

def set_parameter_requires_grad(model, feature_extracting):if feature_extracting:for param in model.parameters():param.requires_grad = Falsemodel_ft = models.resnet18()#18层的能快点,条件好点的也可以选152
model_ft

修改输出层

def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):model_ft = models.resnet18(pretrained=use_pretrained)set_parameter_requires_grad(model_ft, feature_extract)num_ftrs = model_ft.fc.in_featuresmodel_ft.fc = nn.Linear(num_ftrs, 102)#类别数自己根据自己任务来input_size = 64#输入大小根据自己配置来return model_ft, input_size

更新输出层参数

model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)#GPU还是CPU计算
model_ft = model_ft.to(device)# 模型保存,名字自己起
filename='checkpoint.pth'# 是否训练所有层
params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:params_to_update = []for name,param in model_ft.named_parameters():if param.requires_grad == True:params_to_update.append(param)print("\t",name)
else:for name,param in model_ft.named_parameters():if param.requires_grad == True:print("\t",name)

优化器设置

optimizer_ft = optim.Adam(params_to_update, lr=1e-2)#要训练啥参数,你来定
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=10, gamma=0.1)#学习率每7个epoch衰减成原来的1/10
criterion = nn.CrossEntropyLoss()

训练策略

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,filename='best.pt'):#咱们要算时间的since = time.time()#也要记录最好的那一次best_acc = 0#模型也得放到你的CPU或者GPUmodel.to(device)#训练过程中打印一堆损失和指标val_acc_history = []train_acc_history = []train_losses = []valid_losses = []#学习率LRs = [optimizer.param_groups[0]['lr']]#最好的那次模型,后续会变的,先初始化best_model_wts = copy.deepcopy(model.state_dict())#一个个epoch来遍历for epoch in range(num_epochs):print('Epoch {}/{}'.format(epoch, num_epochs - 1))print('-' * 10)# 训练和验证for phase in ['train', 'valid']:if phase == 'train':model.train()  # 训练else:model.eval()   # 验证running_loss = 0.0running_corrects = 0# 把数据都取个遍for inputs, labels in dataloaders[phase]:inputs = inputs.to(device)#放到你的CPU或GPUlabels = labels.to(device)# 清零optimizer.zero_grad()# 只有训练的时候计算和更新梯度outputs = model(inputs)loss = criterion(outputs, labels)_, preds = torch.max(outputs, 1)# 训练阶段更新权重if phase == 'train':loss.backward()optimizer.step()# 计算损失running_loss += loss.item() * inputs.size(0)#0表示batch那个维度running_corrects += torch.sum(preds == labels.data)#预测结果最大的和真实值是否一致epoch_loss = running_loss / len(dataloaders[phase].dataset)#算平均epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)time_elapsed = time.time() - since#一个epoch我浪费了多少时间print('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))# 得到最好那次的模型if phase == 'valid' and epoch_acc > best_acc:best_acc = epoch_accbest_model_wts = copy.deepcopy(model.state_dict())state = {'state_dict': model.state_dict(),#字典里key就是各层的名字,值就是训练好的权重'best_acc': best_acc,'optimizer' : optimizer.state_dict(),}torch.save(state, filename)if phase == 'valid':val_acc_history.append(epoch_acc)valid_losses.append(epoch_loss)#scheduler.step(epoch_loss)#学习率衰减if phase == 'train':train_acc_history.append(epoch_acc)train_losses.append(epoch_loss)print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))LRs.append(optimizer.param_groups[0]['lr'])print()scheduler.step()#学习率衰减time_elapsed = time.time() - sinceprint('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))print('Best val Acc: {:4f}'.format(best_acc))# 训练完后用最好的一次当做模型最终的结果,等着一会测试model.load_state_dict(best_model_wts)return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs 
http://www.khdw.cn/news/19571.html

相关文章:

  • 自己想做一个网站怎么做的腾讯企点qq
  • 北京市门头沟有没有做网站的新网站如何推广
  • 服务器建设网站品牌推广公司
  • 兰州网站的优化合肥百度快速排名优化
  • dw网站建设关键词在线试听免费
  • 追设计网站今天国际新闻大事
  • 我做的网站不知道网站怎么办搜索引擎关键词的工具
  • 电子商务网站建设与维护的教学建网站一般多少钱
  • 动态网站开发 用什么模板语言企业营销推广方案
  • 用word文档做网站腾讯云域名注册官网
  • 网站项目策划书模板seo推广公司有哪些
  • 做网站用jsp还是html微信搜一搜seo
  • 网站上传视频怎么做口碑营销案例有哪些
  • 黄山网站建设公司上海网络营销
  • 郑志平爱站网创始人宣传页面怎么制作
  • 苏州高端网站设计企业怎样做好销售和客户交流
  • dw网站制作流程发表文章的平台有哪些
  • wordpress begin教程seo权重查询
  • 北京最大的网站建设有限公司公司企业员工培训
  • 齐博企业网站推广公司有哪些公司
  • wordpress需要翻墙吗关键词排名优化工具有用吗
  • 岳阳企业网站定制开发成品网站源码的优化技巧
  • 深圳做app网站制作seo怎么发外链的
  • 如何查网站有无备案举例网络营销的例子
  • 上海网站建设开上海网络排名优化
  • 网站建设贰金手指下拉贰拾网络营销的方式和方法
  • 二维码生成器小程序站长工具seo查询5g5g
  • 爱站网新网址是多少淘宝seo搜索优化
  • 团队建设海报网站官网seo
  • godaddy托管wordpress福州seo快速排名软件