当前位置: 首页 > news >正文

做膜的网站有哪些seo网站关键词排名优化

做膜的网站有哪些,seo网站关键词排名优化,国际新闻最新消息今天新闻大事件 中方,wordpress网页设计价格设计目录 一、离线数仓 1. 离线数仓是什么? 2. 离线数仓的特点 3. 离线数仓的适用场景 二、实时数仓 1. 实时数仓是什么? 2. 实时数仓的特点 3. 实时数仓的适用场景 三、由数仓需求变化带来的数据仓库架构的演变 1. 传统数仓架构 2. 离线大数据架构 3. Lambd…

目录

一、离线数仓

1. 离线数仓是什么?

2. 离线数仓的特点

3. 离线数仓的适用场景

二、实时数仓

1. 实时数仓是什么?

2. 实时数仓的特点

3. 实时数仓的适用场景

三、由数仓需求变化带来的数据仓库架构的演变

1. 传统数仓架构

2. 离线大数据架构

3. Lambda架构

4. Kappa架构

5. 混合架构

四、实时数仓和离线数仓的思考与总结


实时数仓和离线数仓都是数据仓库的不同类型,用于存储和管理企业的数据,但它们在数据处理和使用的时间、速度以及用途方面有明显的区别。

在介绍实时数仓之前,我们理应先来了解一下传统的离线数仓。毕竟在企业早期的数据建设规划中,在数据实时性要求不高的前提下,基本一开始都会选择建设离线数仓。

一、离线数仓

1. 离线数仓是什么?

离线数仓(Offline Data Warehouse)是一个用于存储和处理批处理数据的系统。它的特点是数据的处理和分析是基于批处理作业进行的,通常以较长的时间周期为单位。传统离线数仓的数据时效性是 T+1,调度频率以天为单位,无法支撑实时场景的数据需求。即使能将调度频率设置成小时,也只能解决部分时效性要求不高的场景,对于实效性要求很高的场景还是无法优雅的支撑。

2. 离线数仓的特点

  • 批处理:离线数仓通过批处理作业处理数据,这意味着数据在一定时间周期内收集、存储,然后一次性处理。
  • 高容量:离线数仓通常设计用于存储大量历史数据。
  • 延迟较高:由于数据处理是批处理的,因此离线数仓不适合需要实时或近实时数据的应用。

3. 离线数仓的适用场景

  • 需要进行历史数据分析、报告生成的应用,如销售报告、月度财务报表等。
  • 数据量较大且处理时间不是关键问题的应用。

但是随着企业的发展,数据量日益增大,传统数据的方案在时效性上和数据维护上变得越来越困难。这时,实时数仓应运而生。

二、实时数仓

1. 实时数仓是什么?

实时数仓(Real-time Data Warehouse)是一个用于存储和处理实时数据的系统。它的主要特点是数据的处理和分析是即时进行的,数据几乎立即进入数仓并可以立即用于分析和决策。

2. 实时数仓的特点

  • 低延迟:实时数仓能够在数据产生后迅速将其捕捉和处理,通常以秒或亚秒级的速度。
  • 数据流处理:实时数仓通常使用流式处理技术来处理数据,这允许数据在进入仓库时立即进行转换和计算。
  • 实时分析:数据可以用于实时监控、仪表板、预测和决策支持。
  • 高吞吐量:实时数仓需要处理大量的数据流,因此需要具备高吞吐量的性能。
  • 复杂性:由于需要处理实时数据流,实时数仓的架构和技术通常比较复杂。

3. 实时数仓的适用场景

  • 需要实时监控业务指标的应用,如金融交易看板、实时销售报表、在线广告投放分析等。
  • 需要立即采取行动以应对实时事件的应用,如异常监测大屏、欺诈实时检测等。

三、由数仓需求变化带来的数据仓库架构的演变

从1990年 Inmon 提出数据仓库概念到今天,数仓架构经历了最初的传统数仓架构、离线大数据架构、Lambda 架构、Kappa 架构以及由Flink 的火热带出的流批一体架构,数据架构技术不断演进,本质是在往流批一体的方向发展,让用户能以最自然、最小的成本完成实时计算。

1. 传统数仓架构

这是比较传统的一种方式,结构或半结构化数据通过离线ETL定期加载到离线数仓,之后通过计算引擎取得结果,供前端使用。这里的离线数仓+计算引擎,通常是使用大型商业数据库来承担,例如Oracle、DB2、Teradata等。

2. 离线大数据架构

随着数据规模的不断增大,传统数仓方式难以承载海量数据。随着大数据技术的普及,采用大数据技术来承载存储与计算任务。数据源通过离线的方式导入到离线数仓中。下游应用根据业务需求选择直接读取 DM 或加一层数据服务,比如 MySQL 或 Redis。

数据仓库从模型层面分为三层:

  • ODS,操作数据层,保存原始数据;
  • DWD,数据仓库明细层,根据主题定义好事实与维度表,保存最细粒度的事实数据;
  • DM,数据集市/轻度汇总层,在 DWD 层的基础之上根据不同的业务需求做轻度汇总;

当然,也可以使用传传统数据库集群或MPP架构数据库来完成。例如Hadoop+Hive/Spark、Oracle RAC、GreenPlum等。

3. Lambda架构

随着业务的发展,随着业务的发展,人们对数据实时性提出了更高的要求。此时,出现了Lambda架构,其将对实时性要求高的部分拆分出来,增加条实时计算链路。从源头开始做流式改造,将数据发送到消息队列中,实时计算引擎消费队列数据,完成实时数据的增量计算。与此同时,批量处理部分依然存在,实时与批量并行运行。最终由统一的数据服务层合并结果给于前端。一般是以批量处理结果为准,实时结果主要为快速响应。

4. Kappa架构

而Lambda架构,一个比较严重的问题就是需要维护两套逻辑。一部分在批量引擎实现,一部分在流式引擎实现,维护成本很高。此外,对资源消耗也较大。随后诞生的Kappa架构,正是为了解决上述问题。其在数据需要重新处理或数据变更时,可通过历史数据重新处理来完成。方式是通过上游重放完成(从数据源拉取数据重新计算)。

可Kappa架构最大的问题是流式重新处理历史的吞吐能力会低于批处理,但这个可以通过增加计算资源来弥补。

5. 混合架构

上述架构各有其适应场景,有时需要综合使用上述架构组合满足实际需求。当然这也必将带来架构的复杂度。用户应根据自身需求,有所取舍。在一般大多数场景下,是可以使用单一架构解决问题。现在很多产品在流批一体、海量、实时性方面也有非常好的表现,可以考虑这种“全能手”解决问题。

四、实时数仓和离线数仓的思考与总结

通常,企业可能会同时使用实时数仓和离线数仓来满足不同的需求,以确保能够有效地处理各种类型的数据。这种情况下,这两者可能会集成,以充分利用它们的优势。

另外想说明的是实时数仓方案并不是“搬过来”,而是根据业务“演化来”的,具体设计的时候需要根据企业自身业务情况,找到最适合自己当下的数仓架构。

了解更多数据仓库与数据集成关干货内容请关注>>>FineDataLink官网

免费试用、获取更多信息,点击了解更多>>>体验FDL功能

往期推荐:

【大数据】什么是数据湖?一文揭示数据湖的本质-CSDN博客

金蝶API取数+JSON解析,FDL助力高效数据处理-CSDN博客

业务场景中的数仓调度-CSDN博客

http://www.khdw.cn/news/1947.html

相关文章:

  • 网站建设 工商注册网络优化工程师前景
  • 做好网站开发工作总结百度一下你就知道下载
  • 临沂网站建设哪家好华联股份股票
  • 做it行业招标网站有哪些开发网站建设
  • 怎么做博客网站徐州网站优化
  • wordpress文章图片全屏浏览信息流广告优化师
  • 室内设计学徒有多坑网络优化主要做什么
  • 永川做网站的企业网站管理
  • 专业网站建设制作价格低百度域名
  • 北京市海淀区教委网站网络销售有哪些
  • 学校网站总务建设seo权威入门教程
  • 湛江市建设规划局网站手游推广渠道和推广方式
  • 崇信县门户网站领导动态百度搜索风云榜单
  • 网站 维护服装营销方式和手段
  • 个人主页网站欣赏哪里可以建网站
  • 山东省建设厅网站查网站下载免费软件
  • 个人如何做网站网站排名软件包年
  • 佛山网站建设品牌浙江企业seo推广
  • 猎头做单的网站数据分析培训机构哪家好
  • 优秀企业网站模板下载短视频代运营费用明细
  • 做网站的商标是哪类手机百度下载免费安装
  • 西宁做网站君博推荐百度提交网站收录查询
  • 公司网站建设沈阳建站模板免费下载
  • 1688药品批发网关键词优化seo排名
  • 做一下网站博彩seo自动工具
  • 衡水网站建设推广百度推广售后
  • 中小企业建站平台app运营方案策划
  • 企业网站及公众号建设方案2345网址导航官网下载
  • 厦门建设管理局网站首页最近的国际新闻
  • 国际域名注册管理机构福州网站seo