当前位置: 首页 > news >正文

自助网站建设程序b2b网站平台有哪些

自助网站建设程序,b2b网站平台有哪些,郴州新网招聘信息,原型图axure教程1.理论知识 Apriori是一种常用的数据关联规则挖掘方法,它可以用来找出数据集中频繁出现的数据集合。该算法第一次实现在大数据集上的可行的关联规则提取,其核心思想是通过连接产生候选项及其支持度,然后通过剪枝生成频繁项集。 Apriori算法的…

1.理论知识

Apriori是一种常用的数据关联规则挖掘方法,它可以用来找出数据集中频繁出现的数据集合。该算法第一次实现在大数据集上的可行的关联规则提取,其核心思想是通过连接产生候选项及其支持度,然后通过剪枝生成频繁项集。

Apriori算法的主要思想是找出存在于事务数据集中最大的频繁项集,再利用得到的最大频繁项集与预先设定的最小置信度阈值生成强关联规则。

图1.1关键名词解释


2.算法流程图

3.实现代码

def item(dataset):  # 求第一次扫描数据库后的 候选集c1 = []  # 存放候选集元素for x in dataset:  # 求这个数据库中出现了几个元素,然后返回for y in x:if [y] not in c1:c1.append([y])c1.sort()return c1# 计算支持度
def get_frequent_item(dataset, c, min_support):cut_branch = {}  # 用来存放所有项集的支持度的字典for x in c:for y in dataset:if set(x).issubset(set(y)):cut_branch[tuple(x)] = cut_branch.get(tuple(x),0) + 1Fk = []  # 支持度大于最小支持度的项集,  即频繁项集sup_dataK = {}  # 用来存放所有 频繁 项集的支持度的字典for i in cut_branch:if cut_branch[i] >= min_support:Fk.append(list(i))sup_dataK[i] = cut_branch[i]return Fk, sup_dataK# 计算候选集
def get_candidate(Fk, K):  # 求第k次候选集ck = []  # 存放产生候选集for i in range(len(Fk)):for j in range(i + 1, len(Fk)):L1 = list(Fk[i])[:K - 2].sort()L2 = list(Fk[j])[:K - 2].sort()if L1 == L2:if K > 2:new = list(set(Fk[i]) ^ set(Fk[j]))else:new = set()for x in Fk:if set(new).issubset(set(x)) and list(set(Fk[i]) | set(Fk[j])) not in ck:ck.append(list(set(Fk[i]) | set(Fk[j])))return ck# Apriori算法
def Apriori(dataset, min_support=2):c1 = item(dataset)f1, sup_1 = get_frequent_item(dataset, c1, min_support)F = [f1]sup_data = sup_1K = 2while len(F[K - 2]) > 1:ck = get_candidate(F[K - 2], K)  # 求第k次候选集fk, sup_k = get_frequent_item(dataset, ck, min_support)F.append(fk)  # 把新产生的候选集假如Fsup_data.update(sup_k)  # 字典更新,加入新得出的数据K += 1return F, sup_data  # 返回所有频繁项集, 以及存放频繁项集支持度的字典"""
Apriori算法
定义A 1,   B 2,   C 3,   D 4,   E 51 [A C D]       1 3 4
2 [B C E]       2 3 5
3 [A B C E]     1 2 3 5
4 [B E]         2 5min_support = 2 
"""
# 主函数
if __name__ == '__main__':# 数据dataset = [[1, 3, 4],[2, 3, 5],[1, 2, 3, 5],[2, 5]]# 最小支持度设置为2min_support = 2F, sup_data = Apriori(dataset, min_support)print("最小支持度为:\n ", min_support)print('------------------------------------------------------')print("已知关系:\n ", dataset)print('------------------------------------------------------')print("所有的频繁项为:\n {}".format(F))print('------------------------------------------------------')print("对应的支持度为:\n {}".format(sup_data))

4.实验结果


测试数据

表1 Apriori算法输入的数据 (最小支持度设置为2)

序号

数据项

替换

1

[A C D]

1 3 4

2

[B C E]

2 3 5

3

[A B C E]

1 2 3 5

4

[B E]

2 5


实验结果与分析

图 1.2 Apriori关联规则算法实验结果


算法优缺点

优点:

  1. Aprioi算法采用逐层搜索的迭代方法,算法简单易于实现。
  2. 数据采用水平组织方式
  3. 采用Apriori 优化方法
  4. 适合事务数据库的关联规则挖掘。
  5. 适合稀疏数据集:根据以往的研究,该算法只能适合稀疏数据集的关联规则挖掘,也就是频繁项目集的长度稍小的数据集。

缺点:

  1. 对数据库的扫描次数过多。
  2. Apion算法可能产生大量的候选项集。
  3. 在频繁项目集长度变大的情况下,运算时间显著增加。
  4. 采用唯一支持度,没有考虑各个属性重要程度的不同。
  5. 算法的适应面窄。

 其他实验(我是芒果酱点一个关注吧(σ′▽‵)′▽‵)σ)

  • k-Means聚类算法 HNUST【数据分析技术】(2024)-CSDN博客
  • PageRank Web页面分级算法 HNUST【数据分析技术】(2024)-CSDN博客
  • KNN分类算法 HNUST【数据分析技术】(2024)-CSDN博客
  • Apriori关联规则算法 HNUST【数据分析技术】(2024)-CSDN博客
http://www.khdw.cn/news/18042.html

相关文章:

  • 酒店做爰视频网站哪家网络公司比较好
  • 装修平台网站广州网络营销产品代理
  • 南山做网站推广乐云seoseo软件推广
  • 微网站的优点灰色词快速上排名
  • 天津重型网站建设风格站长之家域名信息查询
  • 网站建设 套餐seo资源咨询
  • 服装b2c商城网站建设十大看免费行情的软件下载
  • wordpress钻石插件南宁seo推广
  • wordpress头部空白seo工作职位
  • 电商供应链网站互联网营销推广怎么做
  • 个人网站注册什么域名公司网站设计与制作
  • 驻马店怎么建设自己的网站迅速上排名网站优化
  • 高唐做网站品牌策略有哪些
  • 制作企业网站需要多少钱深圳seo专家
  • 农业网站设计外贸网站建站
  • wordpress自动上传文章沈阳百度推广优化
  • 小说网站的内容做搜索引擎seo外包
  • 做网站攻击企业网站推广的形式有哪些
  • 网站用 做有什么好处网络推广合作协议范本
  • 武汉网站制作公司搜索引擎营销简称
  • 重庆网站建设价格产品50个关键词
  • 怎么看网站的访问量seo怎么做优化计划
  • 做网站算 自由职业者项目推广渠道有哪些
  • 公司招聘网站续费申请免费二级域名分发
  • html5网站编写湖南百度推广
  • 百度推广还要求做网站化学sem是什么意思
  • 博客网站登录接广告的平台推荐
  • 做百度网站分录百度关键词指数查询
  • 做单页购物网站用什么好百度竞价推广登录
  • 网站的客服怎么做宁波seo网络推广定制多少钱