当前位置: 首页 > news >正文

绍兴做企业网站的公司广东广州重大新闻

绍兴做企业网站的公司,广东广州重大新闻,建设八大员报考网站是真的吗,赌博游戏网站怎么做写在前面! 1 先验分布和后验分布 三种信息:总体信息、样本信息、先验信息 总体信息:“总体是正态分布”;样本信息:总体抽取的样本提供的信息,是最新鲜的信息;先验信息:在抽样之前就…

写在前面!

 

1 先验分布和后验分布

三种信息:总体信息、样本信息、先验信息

总体信息:“总体是正态分布”;样本信息:总体抽取的样本提供的信息,是最新鲜的信息;先验信息:在抽样之前就知道的关于统计问题的一些信息【来源于历史资料等】

贝叶斯公式

离散形式:

几个公式:

先验分布:

样本信息的综合:

三个信息的综合:

\theta进行估计:

求后验分布!!!
【1】连续时(先验分布)

(1)写出先验分布,如果不知道按照均匀分布处理

(2)计算样本X 和参数\theta的联合分布

样本似然函数 乘以 先验信息密度函数

(3)计算X的边际密度【m(x)】

(4)利用贝叶斯公式得到\theta的后验分布

所以\theta的范围在这里就是 大于样本数的的最大值-0.5 小于最小值+0.5

这样就定下了\theta的取值范围咯!!!!

具体视频启发见:已知观测值求后验分布-哔哩哔哩_bilibili

【2】离散

共轭先验分布

【1】正态分布[指的是样本]的共轭先验分布[先验和后验都是]是正态分布(之间的关系)

【2】二项分布中的成功概率\theta的共轭先验分布式贝塔分布

【3】泊松分布的均值\lambda的共轭先验分布是伽马分布

二项分布的进化,X是发生的次数,那么当抽取样本时,n\bar{x}就是总次数!!!!【可见例题5.3.1】

贝塔分布

伽马分布

特例:

先验分布超参数的确定

【1】利用先验矩

【2】利用先验分位数

【3】利用先验矩和先验分位数

充分统计量【更方便的计算出后验分布!】

作用:

应用:

p(x|\theta)是没有办法计算出来的因为,不知道具体取值的情况,但是p(\bar{x}|\theta)是知道的

2 贝叶斯推断

存在意义:

2.1 条件方法

2.2 估计

2.2.1 贝叶斯估计

例题1

例题2

例题3

贝叶斯假设 是假设\theta是均匀分布,当都为1 的时候贝塔分布退化成均匀分布

例题4

最大的取值不能超过观察值哦!!!

2.2.2 贝叶斯误差估计

后验均方误差的均值!

例题1  !!!!(先验分布是离散的)

后验密度达到最大的时候所对应的\theta 是最大后验估计

后验分布期望值是后验分布均值

例题2 (先验分布是连续的贝塔分布)

众数算出来的值其实就是贝塔分布函数达到最大时自变量的取值!!!!

2.3 区间估计

不用寻找枢轴量直接用后验分布就可以!!

例题1

110.38-1.96*8.32 = 94.07

110.38+1.96*8.32 = 126.69

2.4 假设检验

2.4.1 假设检验

接受最大后验概率的假设!!!!

例题1

计算出后验分布!!

均匀

2.4.2 贝叶斯因子

后验概率比较的方法!

后验机会比、前验机会比!可见2.4.4 例题2

贝叶斯因子表示数据X支持原假设的程度!

2.4.3 简单对简单【先计算贝叶斯因子】

例题1

2.4.4 复杂对复杂【计算后验概率比】

例题2

不用计算器的话:就是先标准化然后查表!

贝叶斯因子小这就不可以!

2.4.5 简单对复杂【先计算贝叶斯因子】

例题3

2.4.6 多重假设检验

例题4 

谁大接受谁!

2.5 预测

例题5

2.6 似然原理

3 先验分布的确定

3.1 主观概率

3.2 利用先验信息

3.2.1 直方图法(微重要)

例题1

3.2.2 选定先验密度函数形式再估计其超参数

通过矩估计的方法!

例题1延续

例题2

3.2.3 定分位度法和变分位度法【了解即可】

3.3 利用边缘分布确定先验分布

3.3.1 可直接求出边缘分布

例题1

让m(x)达到最大时 ,求出两个超参数的值

3.3.2 混合分布下求出边缘分布类似加权求和

例题2

3.3.3 先验选择的ML-LL方法

例题3 延续3.3.1的例题1

样本是从边缘分布里抽出来的当然可以用于边缘分布超参数的估计!!!!!

3.3.4 先验选择的矩方法

可通过公式进行简化计算!

\mu _m(\lambda ) = E^{\theta |\lambda }[\mu (\theta ))]

目标是求出\lambda

例题4

到此为止吧,我看不懂.....服了

3.4 无信息先验分布

4 决策中的收益、损失与效用

4.1 决策问题的三要素

4.2 决策准则

4.2.1 行动的容许性

例题1

4.2.2 决策准则【只使用先验信息】

【1】乐观准则(大中选大)

【2】悲观准则(小中选大)

【3】折中准则(加权)

例题

4.3 先验期望准则

使先验平均收益达到最大的行动a

例题

例题

这个只计算均值时发现有两个最优行动,因此再计算方差 选择方差小的!!!

P134【课本】

4.3.2 两个性质

都加不变,同一个状态的一行加一样的数不变!

4.4 损失函数

损失函数:“没有转到该赚到的钱!”

4.4.1 从收益到损失

例题【由收益矩阵得到损失矩阵】

损失为,当前位 与赚最多钱时的差距!(状态是一定的!!!)

也是一个状态一算!

例题(已知收益函数的表达式求损失函数!)

\theta进行积分得到关于a的表达式,然后求出这个表达式的最小值!!!

4.4.2 损失函数下的悲观准则

例题(收益和损失悲观)

注意悲观准则在 收益函数中时(小中选大);在 损失函数中时(大中选小)

用损失函数进行决策合理一点!

例题

4.4.3 损失函数下的先期望准则

例题

课本【P141】

例题p142

4.5 常用损失函数

4.5.1 常用损失函数

【1】平均损失函数

【2】线性损失函数

【3】0-1损失函数

【4】多元二次损失函数

【5】二行动线性决策问题的损失函数

例题【后序步骤和5.1 中的例题是一样的!】

先求平衡值就是相等的时候\theta的取值!

5 贝叶斯决策

5.1 贝叶斯决策问题定义

先验信息和样本信息 都使用的决策问题!

按照后验平均损失最小 得到贝叶斯决策

优缺点

例题5.1.1P163!!!

让先验期望损失最小是第四章,把\theta弄没,离散的时候是相乘

贝叶斯要在这个机会基础上基础上进行抽样!

5.2 后验风险准则【贝叶斯准则是使用这个的】

5.2.1 后验风险

例题【贝叶斯决策】!!!!!

【1】第四章

【3】贝叶斯

后验分布!:

损失函数的计算后的个数等于:x的取值【抽样后数据的情况】*行动的个数!

损失函数:

行动2:变成只拿出箱子里的两个进行检查 那么需要支付1.6元,然后如果再进行赔偿!

5.2.2 决策函数

5.2.3 后验风险准则

例题5.2.3

例题5.2.4

5.3 常用损失函数下的贝叶斯估计!!!!

5.3.1 平方损失函数下的贝叶斯估计

【1】定理1在平均损失下

【2】定理2在加权平方损失

【3】定理3在多元二次损失函数

例题5.3.1

5.3.2 线性损失函数下的贝叶斯估计

【1】定理1

例题5.3.6

后验分布的积分是1

5.3.3 有限个行动问题的假设检验

 6 统计决策理论

只使用样本信息!

6.1 风险函数

6.1.1 风险函数

6.1.2 决策函数的最优性

6.1.3 统计决策中的点估计问题

6.1.4 统计决策中的区间估计问题

6.2 容许性

例题

6.3 最小最大准则

例题

例题

http://www.khdw.cn/news/17469.html

相关文章:

  • 深圳天琥室内设计学校seo外链发布工具
  • 潍坊网站建设网超网络营销的方式和方法
  • 在制作网站前 不需要急于做的工作是网络营销ppt案例
  • 中华人民共和国住房和城乡建设部官方网站网络推广的优势
  • 网站建设微信运营公司百度一下官网
  • pc28预测网站多少做b2b平台网站
  • 最简单的做网站的工具搜索量用什么工具查询
  • 普通网站怎么做h5软文营销经典案例优秀软文
  • 抚顺建设网站推广平台有哪些?
  • 凡科做视频网站怎样优化关键词到首页
  • 网站怎么做跳转页面软文大全800字
  • wordpress做复杂网站做一个公司网站需要多少钱
  • 开平小学学生做平网站开鲁网站seo不用下载
  • 网站备案 注销只需要手机号的广告
  • 在门户网站建设上的讲话网络营销运营推广
  • app开发公司有哪些流程seo流量是什么
  • 邯山网站制作南宁关键词排名公司
  • 如何对网站的图片做cdn平台推广策划方案
  • 筑巢做网站怎么样网站登录入口
  • 昆明专业的网站制作建设华联股份股票
  • 济南做网站建设昆山网站制作哪家好
  • 把网站做app百度注册公司地址
  • 动态效果酷炫的网站自助建站免费建站平台
  • 公安局网站建设规划书东莞做网站seo
  • 信丰县建设局网站网站检测中心
  • 做旅游网站的yi百度统计数据
  • 网站源码做exe执行程序软文推广收费
  • 商会网站怎么做公司推广方法有哪些
  • 整个网站的关键词泉州全网推广
  • 手机建设银行官方网站短视频seo询盘获客系统