当前位置: 首页 > news >正文

苏州吴江做网站公司电商还有发展前景吗

苏州吴江做网站公司,电商还有发展前景吗,沈阳专业网站建设公司排名,政府网站内容建设 投标目录 0 专栏介绍1 什么是Reeds-Shepp曲线?2 Reeds-Shepp曲线的运动模式3 Reeds-Shepp曲线算法原理3.1 坐标变换3.2 时间翻转(time-flip)3.3 反射变换(reflect)3.4 后向变换(backwards) 4 仿真实现4.1 ROS C实现4.2 Python实现4.3 Matlab实现 0 专栏介绍 &#x1f5…

目录

  • 0 专栏介绍
  • 1 什么是Reeds-Shepp曲线?
  • 2 Reeds-Shepp曲线的运动模式
  • 3 Reeds-Shepp曲线算法原理
    • 3.1 坐标变换
    • 3.2 时间翻转(time-flip)
    • 3.3 反射变换(reflect)
    • 3.4 后向变换(backwards)
  • 4 仿真实现
    • 4.1 ROS C++实现
    • 4.2 Python实现
    • 4.3 Matlab实现

0 专栏介绍

🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。

🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法


1 什么是Reeds-Shepp曲线?

Reeds-Shepp曲线是一种用于描述在平面上从一个点到另一个点最优路径的数学模型。这种曲线是由美国数学家 J. A. Reeds 和 L. A. Shepp 在1990年提出的,它被广泛应用于路径规划和运动规划问题中。Reeds-Shepp曲线的很多原理和Dubins曲线类似,可以先学习曲线生成 | 图解Dubins曲线生成原理(附ROS C++/Python/Matlab仿真)

在这里插入图片描述

Reeds-Shepp曲线具有以下特点:

  • 最优性:Reeds-Shepp曲线是连接两个点的最短路径之一,通常是沿着曲线长度最短的路径。相比于Dubins曲线只允许车辆向前运动,RS曲线同时允许车辆前向、后向运动,使得在某些情况下可以得出比 Dubins 曲线更优的解
  • 约束性:曲线遵循机器人或车辆的运动学约束,例如最大转角、最大速度等。
  • 多样性:存在不同类型的Reeds-Shepp曲线,例如直线-圆弧-直线(L-S-L)、直线-圆弧-反向圆弧-直线(L-S-R-S)等,以适应不同场景下的路径规划需求。

通过计算和生成Reeds-Shepp曲线,可以帮助机器人或车辆高效地规划路径并完成复杂的运动任务。

2 Reeds-Shepp曲线的运动模式

经过证明,RS曲线从起点到终点的最短路径一定是下面的组合之一

{ C ∣ C ∣ C , C C ∣ C , C ∣ C C , C S C , C C β ∣ C β C , C ∣ C β C β ∣ C , C ∣ C π / 2 S C , C S C π / 2 ∣ C , C ∣ C π / 2 S C π / 2 ∣ C } \left\{ \begin{array}{c} C|C|C, CC|C, C|CC, CSC, CC_{\beta}|C_{\beta}C, C|C_{\beta}C_{\beta}|C,\\ C|C_{{{\pi}/{2}}}SC, CSC_{{{\pi}/{2}}}|C, C|C_{{{\pi}/{2}}}SC_{{{\pi}/{2}}}|C\\\end{array} \right\} {CCC,CCC,CCC,CSC,CCβCβC,CCβCβC,CCπ/2SC,CSCπ/2C,CCπ/2SCπ/2C}

其中 C C C表示圆弧运动, S S S表示直线运动,|表示车辆运动朝向发生改变。带 π / 2 \pi/2 π/2下标表示该段轨迹弧长对应的角度为 π / 2 \pi/2 π/2,带 β \beta β下标表示相邻两段轨迹弧长对应的角度相等。将上述组合完整展开后对应如表所示的48种运动模式,其中+代表前行,-代表倒车。后续经过证明, ( L − R + L − ) \left( L^-R^+L^- \right) (LR+L) ( R − L + R − ) \left( R^-L^+R^- \right) (RL+R)两种序列是多余的。

在这里插入图片描述

RS曲线在实现上的复杂度远远高于只有6种组合的Dubins曲线,考虑到序列间的对称关系,引入下面的变换简化曲线求解过程。

3 Reeds-Shepp曲线算法原理

3.1 坐标变换

类似Dubins曲线的思想进行坐标变换。在全局坐标系 x O y xOy xOy中,设机器人起始位姿 p s \boldsymbol{p}_s ps、终止位姿 p g \boldsymbol{p}_g pg、最小转弯半径分别为 ( x s , y s , α ) \left( x_s,y_s,\alpha \right) (xs,ys,α) ( x g , y g , β ) \left( x_g,y_g,\beta \right) (xg,yg,β) R R R。以 p s \boldsymbol{p}_s ps为新坐标系原点,位姿角 α \alpha α方向为 x ′ x' x轴,垂直方向为 y ′ y' y轴建立新坐标系 ,同样考虑归一化最小转弯半径

p s ′ = [ 0 0 0 ] , p g ′ = [ ( x g cos ⁡ β + y g sin ⁡ β ) R ( − x g sin ⁡ β + y g cos ⁡ β ) R β − α ] \boldsymbol{p}_{s}^{'}=\left[ \begin{array}{c} 0\\ 0\\ 0\\\end{array} \right] , \boldsymbol{p}_{g}^{'}=\left[ \begin{array}{c} \left( x_g\cos \beta +y_g\sin \beta \right) R\\ \left( -x_g\sin \beta +y_g\cos \beta \right) R\\ \beta -\alpha\\\end{array} \right] ps= 000 ,pg= (xgcosβ+ygsinβ)R(xgsinβ+ygcosβ)Rβα

3.2 时间翻转(time-flip)

将计算曲线的运动方向全部取反,得到的新曲线与原曲线具有时间翻转关系。如图所示,以 L − R + S + L + ↔ L + R − S − L − L^-R^+S^+L^+\leftrightarrow L^+R^-S^-L^- LR+S+L+L+RSL为例解释时间翻转:设实现了对 L − R + S + L + L^-R^+S^+L^+ LR+S+L+的计算 f ( x , y , ϕ ) f\left( x,y,\phi \right) f(x,y,ϕ),若用同样的函数计算 f ( − x , y , − ϕ ) f\left( -x,y,-\phi \right) f(x,y,ϕ),并将各段路径取反,则等价于以轨迹 L + R − S − L − L^+R^-S^-L^- L+RSL到达 ( x , y , ϕ ) \left( x,y,\phi \right) (x,y,ϕ)

在这里插入图片描述

3.3 反射变换(reflect)

将计算曲线的圆周运动类型全部取反,得到的新曲线与原曲线具有反射变换关系。如图所示,以 L − R + S + L + ↔ R − L + S + R + L^-R^+S^+L^+\leftrightarrow R^-L^+S^+R^+ LR+S+L+RL+S+R+为例解释仿射变换:设实现了对 L − R + S + L + L^-R^+S^+L^+ LR+S+L+的计算 f ( x , y , ϕ ) f\left( x,y,\phi \right) f(x,y,ϕ),若用同样的函数计算 f ( x , − y , − ϕ ) f\left( x,-y,-\phi \right) f(x,y,ϕ),并将圆弧段类型取反,则等价于以轨迹 R − L + S + R + R^-L^+S^+R^+ RL+S+R+到达 ( x , y , ϕ ) \left( x,y,\phi \right) (x,y,ϕ)

在这里插入图片描述

3.4 后向变换(backwards)

将计算曲线的轨迹段逆序,得到的新曲线与原曲线具有后向变换关系。如图所示,以 L − R + S + L + ↔ L + S + R + L − L^-R^+S^+L^+\leftrightarrow L^+S^+R^+L^- LR+S+L+L+S+R+L为例解释后向变换:设实现了对 L − R + S + L + L^-R^+S^+L^+ LR+S+L+的计算 f ( x , y , ϕ ) f\left( x,y,\phi \right) f(x,y,ϕ),若用同样的函数计算 f ( x cos ⁡ ϕ + y sin ⁡ ϕ , x sin ⁡ ϕ − y cos ⁡ ϕ , ϕ ) f\left( x\cos \phi +y\sin \phi ,x\sin \phi -y\cos \phi ,\phi \right) f(xcosϕ+ysinϕ,xsinϕycosϕ,ϕ),并将计算曲线逆序,则等价于以轨迹 L + S + R + L − L^+S^+R^+L^- L+S+R+L到达 ( x , y , ϕ ) \left( x,y,\phi \right) (x,y,ϕ)

在这里插入图片描述

4 仿真实现

4.1 ROS C++实现

核心代码如下所示

Points2d ReedsShepp::generation(Pose2d start, Pose2d goal)
{...// coordinate transformation...// select the best motionRSPath best_path({ REEDS_SHEPP_MAX }, { REEDS_SHEPP_NONE });_update(SCS(x, y, dyaw), best_path);_update(CCC(x, y, dyaw), best_path);_update(CSC(x, y, dyaw), best_path);_update(CCCC(x, y, dyaw), best_path);_update(CCSC(x, y, dyaw), best_path);_update(CCSCC(x, y, dyaw), best_path);if (best_path.len() == REEDS_SHEPP_MAX)return path;// interpolationint points_num = int(best_path.len() / step_) + 6;int i = 0;for (size_t j = 0; j < best_path.size(); j++){int m;double seg_length;best_path.get(j, seg_length, m);// path incrementdouble d_l = seg_length > 0.0 ? step_ : -step_;double x = path_x[i];double y = path_y[i];double yaw = path_yaw[i];// current path lengthdouble l = d_l;while (fabs(l) <= fabs(seg_length)){i += 1;std::tie(path_x[i], path_y[i], path_yaw[i]) = interpolate(m, l, { x, y, yaw });l += d_l;}i += 1;std::tie(path_x[i], path_y[i], path_yaw[i]) = interpolate(m, seg_length, { x, y, yaw });}// remove unused data...// coordinate transformation...return path;
}

4.2 Python实现

核心代码如下所示

def generation(self, start_pose: tuple, goal_pose: tuple):sx, sy, syaw = start_posegx, gy, gyaw = goal_pose# coordinate transformation...# select the best motionplanners = [self.SCS, self.CCC, self.CSC, self.CCCC, self.CCSC, self.CCSCC]best_path, best_cost = None, float("inf")for planner in planners:paths = planner(x, y, dyaw)for path in paths:if path.path_length < best_cost:best_path, best_cost = path, path.path_length# interpolationpoints_num = int(best_cost / self.step) + len(best_path.lengths) + 3x_list = [0.0 for _ in range(points_num)]y_list = [0.0 for _ in range(points_num)]yaw_list = [0.0 for _ in range(points_num)]i = 0for mode_, seg_length in zip(best_path.ctypes, best_path.lengths):# path incrementd_length = self.step if seg_length > 0.0 else -self.stepx, y, yaw = x_list[i], y_list[i], yaw_list[i]# current path lengthlength = d_lengthwhile abs(length) <= abs(seg_length):i += 1x_list[i], y_list[i], yaw_list[i] = self.interpolate(mode_, length, (x, y, yaw))length += d_lengthi += 1x_list[i], y_list[i], yaw_list[i] = self.interpolate(mode_, seg_length, (x, y, yaw))# failed...# remove unused data...# coordinate transformation...return best_cost / self.max_curv, best_path.ctypes, x_list_, y_list_, yaw_list_

在这里插入图片描述

4.3 Matlab实现

核心代码如下所示

function [x_list, y_list, yaw_list] = generation(start_pose, goal_pose, param)  % coordinate transformation...% select the best motionplanners = ["SCS", "CCC", "CSC", "CCCC", "CCSC", "CCSCC"];best_cost = inf;best_path = [];for i=1:length(planners)planner = str2func(planners(i));paths = planner(x, y, dyaw);for j=1:length(paths)if paths(j).len < best_costbest_path = paths(j);best_cost = paths(j).len;endendend% interpolationpoints_num = floor(best_cost / param.step) + length(best_path.segs) + 3;x_list_ = zeros(points_num);y_list_ = zeros(points_num);yaw_list_ = zeros(points_num);i = 1;for j = 1:length(best_path.segs)m = best_path.ctypes(j);seg_length = best_path.segs(j);% path incrementif seg_length > 0.0d_length = param.step;elsed_length = -param.step;endx = x_list_(i); y = y_list_(i); yaw = yaw_list_(i);% current path lengthl = d_length;while abs(l) <= abs(seg_length)i = i + 1;new_pt = interpolate(m, l, [x, y, yaw], param);x_list_(i) = new_pt(1); y_list_(i) = new_pt(2); yaw_list_(i) = new_pt(3);l = l + d_length;endi = i + 1;new_pt = interpolate(m, seg_length, [x, y, yaw], param);x_list_(i) = new_pt(1); y_list_(i) = new_pt(2); yaw_list_(i) = new_pt(3);end% remove unused data...% coordinate transformation...
end

在这里插入图片描述

完整工程代码请联系下方博主名片获取


🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇
http://www.khdw.cn/news/16776.html

相关文章:

  • 浙江平台网站建设找哪家优化大师的优化项目有哪7个
  • 杰讯山西网站建设宁波seo外包费用
  • 个人网站怎么做app流量精灵
  • 做网站要具备些什么10条重大新闻
  • 代码网站开发网络推广方法大全
  • iphone手机网站建设国家优化防控措施
  • 龙海市建设局网站seo公司杭州
  • 做网站的人多吗免费下载百度软件
  • 做企业平台的网站有哪些西安网站制作建设
  • 深圳微商城网站制作深圳网络推广外包公司
  • 一个人网站运营怎么做网店代运营公司靠谱吗
  • 天眼查企业信息查询平台官网石家庄全网seo
  • 免费 网站源码网站seo招聘
  • 西安做网站需要多少钱商品关键词举例
  • 如何做好商务网站的运营怎么做北京疫情最新数据
  • 建立网站的申请什么是全网营销推广
  • 深圳外贸网站建设公司河南网站优化公司哪家好
  • 在手机上编程的软件seo品牌
  • 网站建设深圳公司哪家好seo网站查询工具
  • 一般做海报的图片跟哪个网站下载百度网盘客服24小时电话人工服务
  • 网页制作的公司排名重庆网站排名优化教程
  • 如何做网站吸引广告商全网营销推广案例
  • 网站制作主题思路武汉seo公司哪家专业
  • 做美女网站犯法吗推广普通话
  • php本地建站工具百度信息流广告怎么收费
  • 备案网站容易被收录长尾关键词挖掘
  • 武汉网站建设设计哪家好产品软文撰写
  • 网站怎么做滚动字幕培训机构学校
  • 做网站知识点企业自建网站
  • 衡水做企业网站的价格哪家公司建设网站好