当前位置: 首页 > news >正文

石家庄网站建设wsjzseo营销是什么

石家庄网站建设wsjz,seo营销是什么,官方网站建设公司,全国建筑四库一平台查询上一节,我们通过下载相关的 pandas 数据保存为 本地csv文件,这一节将上节的数据以数据库方式保存。 数据库保存 采集数据部分前一节已做说明,这里就直接用采用前面的内容。这里着重说明的事数据库连接。对与 python 相连接的数据库有很多&a…

上一节,我们通过下载相关的 pandas 数据保存为 本地csv文件,这一节将上节的数据以数据库方式保存。

数据库保存

采集数据部分前一节已做说明,这里就直接用采用前面的内容。这里着重说明的事数据库连接。对与 python 相连接的数据库有很多,作为开放操作性及性能首选 mysql 。(MYSQL的安装这里不做说明),在使用之前,需要安装一个pymysql库,如果没有安装过,用以下命令进行安装,另外一个库sqlalchemy ,一般是默认安装好的。

库安装
pip install pymysql

定义一个数据库连接函数,返回连接对象,以下并非原创,感觉挺好用的,就引用来的。

数据库的连接
def conn():# 引擎参数信息host = 'localhost'user = 'root'passwd = 'root'port = '3306'db = 'quant'# 创建数据库引擎对象mysql_engine = sqlalchemy.create_engine('mysql+pymysql://{0}:{1}@{2}:{3}'.format(user, passwd, host, port),poolclass=sqlalchemy.pool.NullPool)# 如果不存在数据库db_quant则创建mysql_engine.execute("CREATE DATABASE IF NOT EXISTS {0} ".format(db))# 创建连接数据库db_quant的引擎对象db_engine = sqlalchemy.create_engine('mysql+pymysql://{0}:{1}@{2}:{3}/{4}?charset=utf8'.format(user, passwd, host, port, db),pool_size=80, max_overflow=80, pool_timeout=50)# 返回引擎对象return db_engine

上述代码,已很清晰的表述,返回的是数据库连接对象。
而数据表的有两种形式,一种将所有数据股票数据放在一张表里,好处是读写操作方便,缺点表的记录太大了,读取和写入效率非常低。因此将采取另一种方式,每一支股票一张表,那样的话,数据表大概有4000多,读取效率会很快,数据表名即股票名,例如“600001_sh”。通过to_sql()函数写入数据库。

# 写入数据库
table_name = '{}_{}'.format(code[3:], code[:2])
out_df.to_sql(name=table_name, con=engine, if_exists='replace', index=True, index_label='id')
首次执行

完整代码如下

# 第一次执行
import baostock as bs
import pandas as pd
import gc
import timebs.login()stock_df = bs.query_all_stock().get_data()
# 筛选股票数据,上证和深证股票代码在sh.600000与sz.39900之间
stock_df = stock_df[(stock_df['code'] >= 'sh.600000') & (stock_df['code'] < 'sz.399000')]
bs.logout()
stocks=stock_df['code'].to_list()lg = bs.login()
i=0
#数据库连接
engine = conn()
for code in stocks:    rs = bs.query_history_k_data_plus(code,"date,code,open,high,low,close,preclose,volume,amount,adjustflag,turn,tradestatus,pctChg,isST",start_date='2020-01-01', end_date='2023-3-1', #实际应用开始时间选2000-1-1 或更早frequency="d", adjustflag="1")df=rs.get_data()# 剔除停盘数据if df.shape[0]:df = df[(df['volume'] != '0') & (df['volume'] != '')]# 如果数据为空,则不创建if not df.shape[0]:continue# 删除重复数据df.drop_duplicates(['date'], inplace=True)# 日线数据少于250,则不创建if df.shape[0] < 250:continue# 将数值数据转为float型,便于后续处理convert_list = ['open', 'high', 'low', 'close', 'preclose', 'volume', 'amount', 'turn', 'pctChg']df[convert_list] = df[convert_list].astype(float)#df.to_csv("./data/daily/{0}.csv".format(code), index=False)# 写入数据库table_name = '{}_{}'.format(code[3:], code[:2])df.to_sql(name=table_name, con=engine, if_exists='replace', index=True, index_label='id')i=i+1if i%100==0 :gc.collect()print('已完成',i)time.sleep(2)   
bs.logout()

与上节的代码的区别,增加了数据库连接,将写csv文件修改为写入数据库。

执行完毕,打开数据库查看如下图。
stockdb

日常执行
# 日常执行
import baostock as bs
import pandas as pd
import gc
import time
import datetimetodate=datetime.date.today().strftime('%Y-%m-%d')bs.login()
stock_df =  bs.query_sz50_stocks().get_data() # bs.query_all_stock().get_data()# 筛选股票数据,上证和深证股票代码在sh.600000与sz.39900之间
stock_df = stock_df[(stock_df['code'] >= 'sh.600000') & (stock_df['code'] < 'sz.399000')]
bs.logout()
stock=stock_df['code'].to_list()lg = bs.login()
i=0#数据库连接
engine = conn()for code in stocks:    rs = bs.query_history_k_data_plus(code,"date,code,open,high,low,close,preclose,volume,amount,adjustflag,turn,tradestatus,pctChg,isST",start_date=todate, end_date=todate, #选择当天frequency="d", adjustflag="1")df=rs.get_data()# 剔除停盘数据if df.shape[0]:df = df[(df['volume'] != '0') & (df['volume'] != '')]# 如果数据为空,则不创建if not df.shape[0]:continue# 将数值数据转为float型,便于后续处理convert_list = ['open', 'high', 'low', 'close', 'preclose', 'volume', 'amount', 'turn', 'pctChg']df[convert_list] = df[convert_list].astype(float)#df.to_csv("./data/daily/{0}.csv".format(code), mode='a', index=False, header=False) # 写入数据库table_name = '{}_{}'.format(code[3:], code[:2])df.to_sql(name=table_name, con=engine, if_exists='append', index=True, index_label='id')i=i+1    if i%500==0 :gc.collect()print('已完成',i)time.sleep(2)   
bs.logout()

同样,将首次执行中将日期修改当天日期,写入数据方式,由原来的“repalce”修改为了“append”,以完成追加。

总结

至此,我们用两种方式将数据本地化,有了数据我们就可以进行相关的操作。从下一讲开始介绍数据的相关处理。

http://www.khdw.cn/news/15339.html

相关文章:

  • wordpress编辑网站注册域名费用一般多少钱
  • 厦门网站建设百度网盘下载安装
  • 营销型网站建设是什么意思杭州seo教程
  • wordpress 怎么安装ssl海南seo代理加盟供应商
  • 软件工程师英文今日头条搜索优化怎么做
  • 网站做优化的必要性腾讯广告投放平台官网
  • 太原建站模板网站seo的工作内容主要包括
  • 有哪些企业会找人做网站建设谷歌搜索引擎seo
  • 网页建站分为几个类型长沙seo技术培训
  • 外网网站电脑培训班零基础网课
  • 自动建站网站系统域名百度关键词代做排名
  • 程序员用的编程软件网页优化方法
  • 旅行网站开发背景推广一般收多少钱
  • 东莞莞城网站建设凌哥seo
  • 短租网站那家做的好处百度商家怎么入驻
  • 找做废薄膜网站全网热搜榜
  • 江西企业网站建设价格中国企业培训网
  • 新做的网站怎样让百度收录百度推广关键词怎么设置好
  • 西安注册公司流程长沙 建站优化
  • 环保类网站建设搜索引擎优化简称
  • 系统下载网站源码seo刷排名公司
  • 邯郸网站建设在哪里软文代写文案
  • 南京驰铭做网站公司厦门seo收费
  • 做网站必须要注册公司么seo服务靠谱吗
  • 杭州网站建设V芯ee8888e专业营销团队外包公司
  • 南京做电商网站的公司网页模板图片
  • 一家专门做动漫的网站竞价 推广
  • b站如何推广自己的作品宁波seo营销
  • 查企业网站免费国外ddos网站
  • 网站建设内容录入论文百度浏览器官网下载