当前位置: 首页 > news >正文

做网站客户会问什么问题近期新闻热点大事件

做网站客户会问什么问题,近期新闻热点大事件,做配资 怎么在网站联系客户,商城网站建设公司价格目录 ES分词器详解 基本概念 分词发生时期 分词器的组成 切词器:Tokenizer 词项过滤器:Token Filter 停用词 同义词 字符过滤器:Character Filter HTML 标签过滤器:HTML Strip Character Filter 字符映射过滤器&#x…

目录

ES分词器详解

基本概念

分词发生时期

分词器的组成

切词器:Tokenizer

词项过滤器:Token Filter

停用词

同义词

字符过滤器:Character Filter

HTML 标签过滤器:HTML Strip Character Filter

字符映射过滤器:Mapping Character Filter

正则替换过滤器:Pattern Replace Character Filter

相关性详解

什么是相关性(Relevance)

相关性算法

TF-IDF

BM25

通过Explain API查看TF-IDF

Boosting Query


ES分词器详解

基本概念

       分词器官方称之为文本分析器,顾名思义,是对文本进行分析处理的一种手段,基本处理逻辑为按照预先制定的分词规则,把原始文档分割成若干更小粒度的词项,粒度大小取决于分词器规则。


分词发生时期

分词器的处理过程发生在 Index Time 和 Search Time 两个时期。

Index Time:文档写入并创建倒排索引时期,其分词逻辑取决于映射参数analyzer。

Search Time:搜索发生时期,其分词仅对搜索词产生作用。


分词器的组成

切词器(Tokenizer):用于定义切词(分词)逻辑。

词项过滤器(Token Filter):用于对分词之后的单个词项的处理逻辑。

字符过滤器(Character Filter):用于处理单个字符。

注意:分词器不会对源数据造成任何影响,分词仅仅是对倒排索引或者搜索词的行为。

切词器:Tokenizer

        tokenizer 是分词器的核心组成部分之一,其主要作用是分词,或称之为切词。主要用来对原始文本进行细粒度拆分。拆分之后的每一个部分称之为一个 Term,或称之为一个词项。可以把切词器理解为预定义的切词规则。官方内置了很多种切词器,默认的切词器位 standard。

词项过滤器:Token Filter

       词项过滤器用来处理切词完成之后的词项,例如把大小写转换,删除停用词或同义词处理等。官方同样预置了很多词项过滤器,基本可以满足日常开发的需要。当然也是支持第三方也自行开发的。

GET _analyze{"filter" : ["lowercase"],"text" : "WWW ELASTIC ORG CN"}GET _analyze{"tokenizer" : "standard","filter" : ["uppercase"],"text" : ["www.elastic.org.cn","www elastic org cn"]}

停用词
在切词完成之后,会被干掉词项,即停用词。停用词可以自定义
英文停用词(english):a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on,
or, such, that, the, their, then, there, these, they, this, to, was, will, with。
中日韩停用词(cjk):a, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, s,
such, t, that, the, their, then, there, these, they, this, to, was, will, with, www。
DELETE test_token_filter_stop
PUT test_token_filter_stop
{"settings": {"analysis": {"filter": {"my_filter": {"type": "stop","stopwords": ["www"],"ignore_case": true}}}}
}
GET test_token_filter_stop/_analyze
{"tokenizer": "standard","filter": ["my_filter"],"text": ["What www WWW are you doing"]
}

同义词

同义词定义规则

a, b, c => d:这种方式,a、b、c 会被 d 代替。

a, b, c, d:这种方式下,a、b、c、d 是等价的。

PUT test_token_filter_synonym
{"settings": {"analysis": {"filter": {"my_synonym": {"type": "synonym","synonyms": [ "good, nice => excellent" ] //good, nice, excellent}}}}
}
GET test_token_filter_synonym/_analyze
{"tokenizer": "standard", "filter": ["my_synonym"], "text": ["good"]
}

字符过滤器:Character Filter

分词之前的预处理,过滤无用字符。

PUT <index_name>
{"settings": {"analysis": {"char_filter": {"my_char_filter": {"type": "<char_filter_type>"}}}}
}

type:使用的字符过滤器类型名称,可配置以下值:

html_strip、mapping、pattern_replace

HTML 标签过滤器:HTML Strip Character Filter

字符过滤器会去除 HTML 标签和转义 HTML 元素,如、&

PUT test_html_strip_filter
{"settings": {"analysis": {"char_filter": {"my_char_filter": {"type": "html_strip",  // html_strip 代表使用 HTML 标签过滤器"escaped_tags": [     // 当前仅保留 a 标签        "a"]}}}}
}
GET test_html_strip_filter/_analyze
{"tokenizer": "standard", "char_filter": ["my_char_filter"],"text": ["<p>I&apos;m so <a>happy</a>!</p>"]
}

参数:escaped_tags:需要保留的 html 标签。

字符映射过滤器:Mapping Character Filter

通过定义映替换为规则,把特定字符替换为指定字符

PUT test_html_strip_filter
{"settings": {"analysis": {"char_filter": {"my_char_filter": {"type": "mapping",    // mapping 代表使用字符映射过滤器"mappings": [                // 数组中规定的字符会被等价替换为 => 指定的字符"滚 => *","垃 => *","圾 => *"]}}}}
}
GET test_html_strip_filter/_analyze
{//"tokenizer": "standard", "char_filter": ["my_char_filter"],"text": "你就是个垃圾!滚"
}
正则替换过滤器:Pattern Replace Character Filter
PUT text_pattern_replace_filter
{"settings": {"analysis": {"char_filter": {"my_char_filter": {"type": "pattern_replace",    // pattern_replace 代表使用正则替换过滤器            "pattern": """(\d{3})\d{4}(\d{4})""",    // 正则表达式"replacement": "$1****$2"}}}}
}
GET text_pattern_replace_filter/_analyze
{"char_filter": ["my_char_filter"],"text": "您的手机号是18868686688"
}

相关性详解

搜索是用户和搜索引擎的对话,用户关心的是搜索结果的相关性

1. 是否可以找到所有相关的内容

2. 有多少不相关的内容被返回了

3. 文档的打分是否合理

4. 结合业务需求,平衡结果排名


什么是相关性(Relevance)

       搜索的相关性算分,描述了一个文档和查询语句匹配的程度。ES 会对每个匹配查询条件的结果进行算分_score。打分的本质是排序,需要把最符合用户需求的文档排在前面。

如何衡量相关性:

1. Precision(查准率)―尽可能返回较少的无关文档。

2. Recall(查全率)–尽量返回较多的相关文档。

3. Ranking -是否能够按照相关度进行排序。


相关性算法

ES5之前,默认的相关性算分采用TF-IDF,现在采用BM25。

TF-IDF

       TF-IDF(term frequency–inverse document frequency)是一种用于信息检索与数据挖掘的常用加权技术。

Lucene中的TF-IDF评分公式:

TF是词频(Term Frequency)

检索词在文档中出现的频率越高,相关性也越高。

词频(TF) = 某个词在文档中出现的次数 / 文档的总词数

IDF是逆向文本频率(Inverse Document Frequency)

每个检索词在索引中出现的频率,频率越高,相关性越低。总文档中有些词比如“是”、“的” 、“在” 在所有文档中出现频率都很高,并不重要,可以减少多个文档中都频繁出现的词的权重。

逆向文本频率(IDF)= log (语料库的文档总数 / (包含该词的文档数+1))

字段长度归一值( field-length norm)

检索词出现在一个内容短的 title 要比同样的词出现在一个内容长的 content 字段权重更大。

       以上三个因素——词频(term frequency)、逆向文本频率(inverse document frequency)和字段长度归一值(field-length norm)——是在索引时计算并存储的,最后将它们结合在一起计算单个词在特定文档中的权重。

BM25

       BM25 就是对 TF-IDF 算法的改进,对于 TF-IDF 算法,TF(t) 部分的值越大,整个公式返回的值就会越大。BM25 就针对这点进行来优化,随着TF(t) 的逐步加大,该算法的返回值会趋于一个数值。

        从ES5开始,默认算法改为BM25,和经典的TF-IDF相比,当TF无限增加时,BM25算分会趋于一个数值。

               

BM25公式


通过Explain API查看TF-IDF
PUT /test_score/_bulk
{"index":{"_id":1}}
{"content":"we use Elasticsearch to power the search"}
{"index":{"_id":2}}
{"content":"we like elasticsearch"}
{"index":{"_id":3}}
{"content":"Thre scoring of documents is caculated by the scoring formula"}
{"index":{"_id":4}}
{"content":"you know,for search"}GET /test_score/_search
{"explain": true, "query": {"match": {"content": "elasticsearch"}}
}GET /test_score/_explain/2
{"query": {"match": {"content": "elasticsearch"}}
}
Boosting Query

Boosting是控制相关度的一种手段。可以通过指定字段的boost值影响查询结果

参数boost的含义:

1. 当boost > 1时,打分的权重相对性提升

2. 当0 < boost

3. 当boost

应用场景:希望包含了某项内容的结果不是不出现,而是排序靠后。

POST /blogs/_bulk
{"index":{"_id":1}}
{"title":"Apple iPad","content":"Apple iPad,Apple iPad"}
{"index":{"_id":2}}
{"title":"Apple iPad,Apple iPad","content":"Apple iPad"}GET /blogs/_search
{"query": {"bool": {"should": [{"match": {"title": {"query": "apple,ipad","boost": 1}}},{"match": {"content": {"query": "apple,ipad","boost": 4}}}]}}
}

案例:要求苹果公司的产品信息优先展示

POST /news/_bulk
{"index":{"_id":1}}
{"content":"Apple Mac"}
{"index":{"_id":2}}
{"content":"Apple iPad"}
{"index":{"_id":3}}
{"content":"Apple employee like Apple Pie and Apple Juice"}GET /news/_search
{"query": {"bool": {"must": {"match": {"content": "apple"}}}}
}

利用must not排除不是苹果公司产品的文档

GET /news/_search
{"query": {"bool": {"must": {"match": {"content": "apple"}},"must_not": {"match":{"content": "pie"}}}}
}

利用negative_boost降低相关性

对某些返回结果不满意,但又不想排除掉( must_not),可以考虑boosting query的negative_boost。

1. negative_boost 对 negative部分query生效。

2. 计算评分时,boosting部分评分不修改,negative部分query乘以negative_boost值。

3. negative_boost取值:0-1.0,举例:0.3。

GET /news/_search
{"query": {"boosting": {"positive": {"match": {"content": "apple"}},"negative": {"match": {"content": "pie"}},"negative_boost": 0.2}}
}
http://www.khdw.cn/news/124.html

相关文章:

  • wordpress支持react网络优化的基本方法
  • 深圳聘请做网站人员廊坊快速优化排名
  • 与女鬼做的网站seo最新教程
  • 网站建设的教材优化设计答案四年级上册语文
  • 网站建设所需的基本内容沈阳关键词推广
  • 广州做网站的网络公司google移动服务应用优化
  • 想要做一个网站seo引擎优化服务
  • 移动端cpu性能天梯图网站优化包括对什么优化
  • 加工平台网站百度人工客服电话
  • wordpress 上传软件seo技术优化整站
  • 国家网站标题颜色搭配抖音排名优化
  • 个人资质网站做推广b2b电子商务平台有哪些
  • 网站建设开发技术类型如何创建一个网站
  • 举报网站平台怎么举报百度渠道开户哪里找
  • 企业做网站的注意什么百度人工服务热线电话
  • 苏州 做网站南京网络优化公司有哪些
  • 怎么在网站上做排名代写软文
  • 学校网站建设方案策划书怎样给自己的网站做优化
  • 如何做双语网站首页优化排名
  • 海南美容网站建设松原市新闻
  • 杭州app外包公司排名整站优化seo平台
  • wordpress typo3seo的培训班
  • 移动网站是什么意思sem和seo的区别
  • 中山企业网站建设seo网站关键词优化
  • 三里河网站建设企业培训视频
  • 江西南昌网站建设公司哪家好武汉网站关键词推广
  • 那种转转假网站怎么做的武汉做搜索引擎推广的公司
  • 兰州建设网站的网站营销软文范例大全300
  • 建设一个视频教学网站口碑营销案例
  • 局域网网站建设需要什么条件seo技巧