当前位置: 首页 > news >正文

网站服务器租用价格表网络营销案例视频

网站服务器租用价格表,网络营销案例视频,网站建设需要哪些步骤 谢谢,免费做电子目录的网站🚩🚩🚩Hugging Face 实战系列 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在PyCharm中进行 本篇文章配套的代码资源已经上传 从零构建属于自己的GPT系列1:文本数据预处理 从零构建属于自己的GPT系列2:语…

🚩🚩🚩Hugging Face 实战系列 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在PyCharm中进行
本篇文章配套的代码资源已经上传

从零构建属于自己的GPT系列1:文本数据预处理
从零构建属于自己的GPT系列2:语言模型训练

0 任务基本流程

  1. 拿到txt文本数据,本文以15本金庸小说为例
  2. CpmTokenizer预训练模型将所有文本处理成.pkl的token文件
  3. 配置训练参数
  4. token数据转化为索引
  5. 导入GPT2LMHeadModel预训练中文模型,训练文本数据
  6. 训练结束得到个人文本数据特征的新模型
  7. 搭载简易网页界面,部署本地模型
  8. text-to-text专属GPT搭建完成
  9. 获取新数据,模型更加个性化
  10. 优化模型,一次性读取更长文本,生成更长的结果

1 训练数据

在本任务的训练数据中,我选择了金庸的15本小说,全部都是txt文件
在这里插入图片描述
数据打开后的样子
在这里插入图片描述

数据预处理需要做的事情就是使用huggingface的transformers包的tokenizer模块,将文本转化为token
在这里插入图片描述
最后生成的文件就是train_novel.pkl文件,就不用在训练的时候读txt文件了

数据预处理:preprocess.py

2 设置参数

import argparse
from utils import set_logger
from transformers import CpmTokenizer
import os
import pickle
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument('--vocab_file', default='vocab/chinese_vocab.model', type=str, required=False,help='词表路径')
parser.add_argument('--log_path', default='log/preprocess.log', type=str, required=False, help='日志存放位置')
parser.add_argument('--data_path', default='data/novel', type=str, required=False, help='数据集存放位置')
parser.add_argument('--save_path', default='data/train.pkl', type=str, required=False,help='对训练数据集进行tokenize之后的数据存放位置')
parser.add_argument('--win_size', default=200, type=int, required=False,help='滑动窗口的大小,相当于每条数据的最大长度')
parser.add_argument('--step', default=200, type=int, required=False, help='滑动窗口的滑动步幅')
args = parser.parse_args()
  1. 参数包
  2. 本项目utils.py中初始化参数函数
  3. chinese pre-trained model Tokenizer包
  4. 系统包
  5. pickle包,用于将 python 对象序列化(serialization)为字节流,或者将字节流反序列化为 Python 对象
  6. 进度条包
  7. 创建一个用于解析命令行参数的 ArgumentParser 对象
  8. 处理中文文本的变成token的预训练模型的模型文件存放位置
  9. 运行日志文件存放位置
  10. 数据集存放位置
  11. 对训练数据集进行tokenize之后的数据存放位置
  12. 滑动窗口的大小,相当于每条数据的最大长度
  13. 滑动窗口的滑动步幅

3 初始化日志对象

logger = set_logger(args.log_path)
def set_logger(log_path):logger = logging.getLogger(__name__)logger.setLevel(logging.INFO)formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')file_handler = logging.FileHandler(filename=log_path)file_handler.setFormatter(formatter)file_handler.setLevel(logging.INFO)logger.addHandler(file_handler)console = logging.StreamHandler()console.setLevel(logging.DEBUG)console.setFormatter(formatter)logger.addHandler(console)return logger
  1. 选择日志路径,调用日志函数
  2. 创建 logger 对象
  3. 设置日志级别为’logging.INFO’
  4. 创建格式化器 formatter
  5. 创建文件处理器file_handler并指定了日志文件的路径为log_path
  6. 设置处理器的日志级别为 logging.INFO
  7. 添加文件处理器 file_handler 到创建的 logger 对象中
  8. 创建控制台处理器 console,用 logging.StreamHandler() 创建一个将日志输出到控制台的处理器
  9. 设置其日志级别为 logging.DEBUG
  10. 将格式化器 formatter 应用到这个控制台处理器上
  11. 控制台处理器 console 添加到 logger 对象中
  12. 返回了这个配置好的 logger 对象

4 初始化

logger = set_logger(args.log_path)
tokenizer = CpmTokenizer(vocab_file="vocab/chinese_vocab.model")  # pip install jieba
eod_id = tokenizer.convert_tokens_to_ids("<eod>")  # 文档结束符
sep_id = tokenizer.sep_token_id
train_list = []
logger.info("start tokenizing data")
  1. 初始化日志
  2. 创建CPMTokenizer 对象,用于分词和处理中文文本
  3. tokenizer 将特殊标记 转换为其对应的 ID
  4. 获取分词器中分隔符的 ID
  5. 最后处理的数据
  6. 打印

5 处理数据

for file in tqdm(os.listdir(args.data_path)):file = os.path.join(args.data_path, file)with open(file, "r", encoding="utf8") as reader:lines = reader.readlines()for i in range(len(lines)):if lines[i].isspace() != True and lines[i] != '\n':token_ids = tokenizer.encode(lines[i].strip(), add_special_tokens=False) + [eod_id]if i % 1000 == 0:print('cur_step', i, lines[i].strip())else:continuewin_size = args.win_sizestep = args.stepstart_index = 0end_index = win_sizedata = token_ids[start_index:end_index]train_list.append(data)start_index += stepend_index += stepwhile end_index + 50 < len(token_ids):  # 剩下的数据长度,大于或等于50,才加入训练数据集data = token_ids[start_index:end_index]train_list.append(data)start_index += stepend_index += step# 序列化训练数据
with open(args.save_path, "wb") as f:pickle.dump(train_list, f)
  1. os.listdir(args.data_path):得到该路径下所有文件的文件名字符串并返回一个字符串数组,for file in tqdm的for循环会打印读取进度的进度条
  2. 获得当前文件的完整路径
  3. 按照file路径、utf-8编码格式、只读模式打开文件
  4. 按行来读取文件,line在这里是一个list,list每个数据都对于文件的一行数据
  5. 按照行数遍历读取文件数据
  6. 判断当前行是否为空行,或者这行只有换行
  7. 使用tokenizer进行encode,加入结束索引
  8. 每1000行进行一次打印操作
  9. 每1000行进行一次打印操作
  10. 空行不处理
  11. 空行不处理
  12. 滑动窗口长度
  13. 滑动次数
  14. 第一个文件的第i行的第一条数据的开始索引
  15. 第一个文件的第i行的第一条数据的结束索引
  16. 第一个文件的第i行的第一条数据
  17. 添加第一条数据到总数据中
  18. while循环取数据,最后一条数据不足50时就不要了,逐个取数据直到换行,注意这里一行数据可能是一段哦,不一定有逗号或者句号就会换行
  19. 第一个文件的第i行的第k条数据
  20. 添加第k条数据到总数据中
  21. 按照滑动次数更新开始索引
  22. 按照滑动次数更新结束索引
  23. 最后所有的数据都保存在了train_list中
  24. 保存为pickle文件

6 运行过程

在这里插入图片描述
结束后,生成.pkl文件,这个文件作为训练数据进行训练
在这里插入图片描述

从零构建属于自己的GPT系列1:文本数据预处理
从零构建属于自己的GPT系列2:语言模型训练

http://www.khdw.cn/news/11114.html

相关文章:

  • wordpress后台经常504石家庄seo关键词排名
  • 推广公司的套路seo技术好的培训机构
  • wordpress 缩略图宁波seo外包推广排名
  • 罗湖商城网站建设哪家效益快百度识图在线网页版
  • 网页设计入门课程整站优化和关键词优化的区别
  • 安卓应用开发教程阜平网站seo
  • 怎样给装修公司做网站seo发贴软件
  • wordpress多站列表seo系统是什么
  • 做网站要做相应的app吗广州seo网络培训课程
  • 站长seo计费系统全国疫情高峰感染进度
  • b2b模式网站百度竞价一个月5000够吗
  • 网站制作需要多少费用成都最新数据消息
  • 高端网站建设 房产长沙优化官网服务
  • 响应式营销型网站建设怎样设计一个网页
  • 云南网app下载信息流优化师是什么
  • 衡水网络推广 衡水网站建设东莞谷歌推广公司
  • 查询数据的网站怎么做的友情链接交换平台免费
  • wordpress vps 伪静态如何优化网站
  • 品牌网站部门建设方案站长工具pr值查询
  • 深圳知名网站建设哪家好深圳关键词推广排名
  • 充值网站怎么做的沈阳seo关键词排名
  • 凡科官方网跨境电商seo什么意思
  • 做钓鱼网站教程视频关键词优化报价
  • 哪些招聘网站做海外招聘新媒体运营师证书
  • 啪啪男女禁做视频网站培训学校怎么招生
  • 做地坪网站百度新版本更新下载
  • 淄川政府网站建设专家网络推广是什么
  • 南通住房和城乡建设局网站新浪nba最新消息
  • 大连百度做网站推广电话全网推广公司
  • 怎样给公司做网站最吸引人的营销广告词