当前位置: 首页 > news >正文

武汉制作企业网站百度上怎么注册店铺地址

武汉制作企业网站,百度上怎么注册店铺地址,乌鲁木齐官方最新消息发布,地下城做解封任务的网站使用RNN对MNIST手写数字进行分类。RNN和LSTM模型结构 pytorch中的LSTM的使用让人有点头晕,这里讲述的是LSTM的模型参数的意义。 1、加载数据集 import torch import torchvision import torch.nn as nn import torchvision.transforms as transforms import torc…

使用RNN对MNIST手写数字进行分类。RNN和LSTM模型结构

pytorch中的LSTM的使用让人有点头晕,这里讲述的是LSTM的模型参数的意义。


1、加载数据集

import torch 
import torchvision
import torch.nn as nn
import torchvision.transforms as transforms
import torch.utils.data as Data device  = torch.device('cuda' if torch.cuda.is_available() else 'cpu')sequence_length = 28 
input_size = 28 
hidden_size = 128 
num_layers = 2 
num_classes = 10 
batch_size = 128 
num_epochs = 2 
learning_rate = 0.01 train_dataset = torchvision.datasets.MNIST(root='./data/',train=True,transform=transforms.ToTensor(),download=True)
test_dataset = torchvision.datasets.MNIST(root='./data/',train=False,transform=transforms.ToTensor())train_loader = Data.DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True)
test_loader = Data.DataLoader(dataset=test_dataset,batch_size=batch_size)

 2、构建RNN模型

  • input_size – 输入的特征维度

  • hidden_size – 隐状态的特征维度

  • num_layers – 层数(和时序展开要区分开)

  • bias – 如果为False,那么LSTM将不会使用,默认为True

  • batch_first – 如果为True,那么输入和输出Tensor的形状为(batch, seq, feature)

  • dropout – 如果非零的话,将会在RNN的输出上加个dropout,最后一层除外。

  • bidirectional – 如果为True,将会变成一个双向RNN,默认为False

       1、上面的参数来自于文档,最基本的参数是input_size, hidden_size, num_layer三个。input_size:输入数据向量维度,在这里为28;hidden_size:隐藏层特征维度,也是输出的特征维度,这里是128;num_layers:lstm模块个数,这里是2。

       2、h0和c0的初始化维度为(num_layer,batch_size, hidden_size

       3、lstm的输出有out和(hn,cn),其中out.shape = torch.Size([128, 28, 128]),对应(batch_size,时序数,隐藏特征维度),也就是保存了28个时序的输出特征,因为做的分类,所以只需要最后的输出特征。所以取出最后的输出特征,进行全连接计算,全连接计算的输出维度为10(10分类)。

       4、batch_first这个参数比较特殊:如果为true,那么输入数据的维度为(batch, seq, feature),否则为(seq, batch, feature)

       5、num_layers:lstm模块个数,如果有两个,那么第一个模块的输出会变成第二个模块的输入。

       总结:构建一个LSTM模型要用到的参数,(输入数据的特征维度,隐藏层的特征维度,lstm模块个数);时序的个数体现在X中, X.shape = (batch_size,  时序长度, 数据向量维度)。

       可以理解为LSTM可以根据我们的输入来实现自动的时序匹配,从而达到输入长短不同的功能。

class RNN(nn.Module):def __init__(self, input_size,hidden_size,num_layers, num_classes):super(RNN, self).__init__()self.hidden_size = hidden_sizeself.num_layers = num_layers#input_size - 输入特征维度#hidden_size - 隐藏状态特征维度#num_layers - 层数(和时序展开要区分开),lstm模块的个数#batch_first为true,输入和输出的形状为(batch, seq, feature),true意为将batch_size放在第一维度,否则放在第二维度self.lstm = nn.LSTM(input_size,hidden_size,num_layers,batch_first = True)  self.fc = nn.Linear(hidden_size, num_classes)def forward(self,x):#参数:LSTM单元个数, batch_size, 隐藏层单元个数 h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)   #h0.shape = (2, 128, 128)c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)#输出output :  (seq_len, batch, hidden_size * num_directions)#(h_n, c_n):最后一个时间步的隐藏状态和细胞状态#对out的理解:维度batch, eq_len, hidden_size,其中保存着每个时序对应的输出,所以全连接部分只取最后一个时序的#out第一维batch_size,第二维时序的个数,第三维隐藏层个数,所以和lstm单元的个数是无关的out,_ = self.lstm(x, (h0, c0))  #shape = torch.Size([128, 28, 128])out = self.fc(out[:,-1,:])  #因为batch_first = true,所以维度顺序batch, eq_len, hidden_sizereturn out

 训练部分

model = RNN(input_size,hidden_size, num_layers, num_classes).to(device)
print(model)#RNN(
#  (lstm): LSTM(28, 128, num_layers=2, batch_first=True)
#  (fc): Linear(in_features=128, out_features=10, bias=True)
#)criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)total_step = len(train_loader)
for epoch in range(num_epochs):for i,(images, labels) in enumerate(train_loader):#batch_size = -1, 序列长度 = 28, 数据向量维度 = 28images = images.reshape(-1, sequence_length, input_size).to(device)labels = labels.to(device)# Forward passoutputs = model(images)loss = criterion(outputs, labels)# Backward and optimizeoptimizer.zero_grad()loss.backward() optimizer.step()if (i+1) % 100 == 0:print(outputs.shape)print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

# Test the model
with torch.no_grad():correct = 0total = 0for images, labels in test_loader:images = images.reshape(-1, sequence_length, input_size).to(device)labels = labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) 

http://www.khdw.cn/news/10344.html

相关文章:

  • 宁德时代网站哪个公司做的怎么做外链
  • 电影网站这么做关键词镇江seo公司
  • 抚顺网站推广提供seo服务
  • 济南做网站的好公司有哪些湖人最新消息
  • 个人做 下载类网站网络营销swot分析
  • 政府做的网站韶关疫情最新消息
  • 汕头网站建设搭建网站排名优化公司
  • 在谷歌上网站推广郑州网络推广平台有哪些
  • 用jsp做的二手交易网站专业做网站
  • 新闻网站的设计与制作推广链接点击器
  • wordpress 用户身份判断优化营商环境条例全文
  • 做哪方面的网站好呢seo教学培训
  • 泰安做网站优化绍兴seo排名公司
  • 什么是企业营销网站北京百度网讯人工客服电话
  • 做方案的网站宣传渠道和宣传方式有哪些
  • 2013我国中小企业接入互联网和网站建设情况seo排名优化有哪些
  • 科讯cms网站管理系统kesioncms免费网站站长查询
  • 防止做网站的人修改数值找个免费网站这么难吗
  • 网站维护很难吗新闻10条摘抄大全
  • 电影网站做淘宝联盟托管竞价账户哪家好
  • 个人简历表格可填写搜索引擎优化的定义
  • 纪念册设计制作公司网络推广和seo
  • 北京手机网站建设费用班级优化大师官网下载
  • 东莞凤岗网站建设国外免费域名
  • php网站怎么做静态化sem是什么方法
  • 登录浙江省建设信息港阳江seo
  • 哪方面的网站优化一个网站需要多少钱
  • 温江建设网站seo网站优化培训找哪些
  • 怎么建商城网站吗网络营销策划模板
  • 模块网站开发工具百度助手手机下载