精美微信小程序模板seo模拟点击软件源码
【MATLAB第81期】基于MATLAB的LSTM长短期记忆网络预测模型时间滞后解决思路(更新中)
在LSTM预测过程中,极易出现时间滞后,类似于下图,与一个以上的样本点结果错位,产生滞后的效果。
在建模过程中,输入与输出之间关系的建立,周期性样本选择以及数据处理方式等都会产生影响。
影响因素讨论:
①数据预处理方式
②数据输入输出关系构造
二、案例分析——训练集测试集拟合:
1、数据情况
一列数据:
2007-2023年月度数据,168*1
2、多输入多输出(M-1输入,M-1输出)
(1)训练集和测试集单独标准化处理(SJCL1)
XTrain= dataTrainStandardized (1:M-1,:);% 训练输入
YTrain = dataTrainStandardized(2:M,:);% 训练输出
XTest = dataTestStandardized(1:N-1,:)%测试输入 0代表训练输入末位数据
YTest = dataTestStandardized(2:N,:);%测试输出
训练集拟合情况:
测试集拟合情况:
训练集数据的MAE为:6.753
验证集数据的MAE为:15.8771
训练集数据的RMSE为:12.0964
验证集数据的RMSE为:19.5052
训练集数据的MSE为:146.3234
验证集数据的MSE为:380.4535
训练集数据的R2为:0.97525
测试集数据的R2为:0.92702
(2)训练集和测试集整体标准化处理(SJCL3)
XTrain= dataStandardized (1:M-1,:);% 训练输入
YTrain = dataStandardized(2:M,:);% 训练输出
XTest = dataStandardized(1:N-1,:)%测试输入 0代表训练输入末位数据
YTest = dataStandardized(2:N,:);%测试输出
训练集拟合情况:
测试集拟合情况:
训练集数据的MAE为:5.0941
验证集数据的MAE为:12.6767
训练集数据的RMSE为:7.9809
验证集数据的RMSE为:16.9913
训练集数据的MSE为:63.6942
验证集数据的MSE为:288.7044
训练集数据的R2为:0.98875
测试集数据的R2为:0.947
(3)训练集和测试集单独归一化处理(SJCL5)
XTrain= dataTrainNormalization(1:M-1,:);% 训练输入
YTrain = dataTrainNormalization(2:M,:);% 训练输出
XTest = dataTestNormalization(1:N-1,:)%测试输入 0代表训练输入末位数据
YTest = dataTestNormalization(2:N,:);%测试输出
3、多输入多输出(M输入,M输出)
(1)训练集和测试集单独标准化处理(SJCL2)
XTrain= dataTrainStandardized (1:M,:);% 训练输入
YTrain = dataTrainStandardized(2:M+1,:);% 训练输出
XTest = dataTestStandardized(0:N-1,:)%测试输入 0代表训练输入末位数据
YTest = dataTestStandardized(1:N,:);%测试输出
训练集拟合情况:
测试集拟合情况:
训练集数据的MAE为:29.8318
验证集数据的MAE为:26.5024
训练集数据的RMSE为:57.9399
验证集数据的RMSE为:41.4219
训练集数据的MSE为:3357.0305
验证集数据的MSE为:1715.7726
训练集数据的R2为:0.48215
测试集数据的R2为:0.7138
(2)训练集和测试集单独标准化处理(SJCL4)
XTrain= dataStandardized (1:M,:);% 训练输入
YTrain = dataStandardized(2:M+1,:);% 训练输出
XTest = dataStandardized(0:N-1,:)%测试输入 0代表训练输入末位数据
YTest = dataStandardized(1:N,:);%测试输出
训练集拟合情况:
测试集拟合情况:
训练集数据的MAE为:29.8668
验证集数据的MAE为:23.625
训练集数据的RMSE为:59.1022
验证集数据的RMSE为:50.4366
训练集数据的MSE为:3493.0708
验证集数据的MSE为:2543.8486
训练集数据的R2为:0.48001
测试集数据的R2为:0.6037
6、多输入多输出(训练集和测试集单独归一化处理)
XTrain= dataStandardized (1:M,:);% 训练输入
YTrain = dataStandardized(2:M+1,:);% 训练输出
XTest = dataStandardized(0:N-1,:)%测试输入 0代表训练输入末位数据
YTest = dataStandardized(1:N,:);%测试输出
训练集拟合情况:
测试集拟合情况:
预测未来12个月:
2、数据集构造(训练集和测试集单独标准化处理)
XTrain= dataTrainStandardized (1:M-1,:);% 训练输入
YTrain = dataTrainStandardized(2:M,:);% 训练输出
XTest = dataTestStandardized(0:N,:)%测试输入 0代表训练输入末位数据
YTest = dataTestStandardized(1:N,:);%测试输出
LSTM优化后:
LSTM训练集拟合效果:
测试集拟合效果:
LSTM预测未来12个月: