当前位置: 首页 > news >正文

龙岗公司做网站百度官方电话人工服务电话

龙岗公司做网站,百度官方电话人工服务电话,免费建站绑定域名,网站开发用哪个软件好使用RNN对MNIST手写数字进行分类。RNN和LSTM模型结构 pytorch中的LSTM的使用让人有点头晕,这里讲述的是LSTM的模型参数的意义。 1、加载数据集 import torch import torchvision import torch.nn as nn import torchvision.transforms as transforms import torc…

使用RNN对MNIST手写数字进行分类。RNN和LSTM模型结构

pytorch中的LSTM的使用让人有点头晕,这里讲述的是LSTM的模型参数的意义。


1、加载数据集

import torch 
import torchvision
import torch.nn as nn
import torchvision.transforms as transforms
import torch.utils.data as Data device  = torch.device('cuda' if torch.cuda.is_available() else 'cpu')sequence_length = 28 
input_size = 28 
hidden_size = 128 
num_layers = 2 
num_classes = 10 
batch_size = 128 
num_epochs = 2 
learning_rate = 0.01 train_dataset = torchvision.datasets.MNIST(root='./data/',train=True,transform=transforms.ToTensor(),download=True)
test_dataset = torchvision.datasets.MNIST(root='./data/',train=False,transform=transforms.ToTensor())train_loader = Data.DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True)
test_loader = Data.DataLoader(dataset=test_dataset,batch_size=batch_size)

 2、构建RNN模型

  • input_size – 输入的特征维度

  • hidden_size – 隐状态的特征维度

  • num_layers – 层数(和时序展开要区分开)

  • bias – 如果为False,那么LSTM将不会使用,默认为True

  • batch_first – 如果为True,那么输入和输出Tensor的形状为(batch, seq, feature)

  • dropout – 如果非零的话,将会在RNN的输出上加个dropout,最后一层除外。

  • bidirectional – 如果为True,将会变成一个双向RNN,默认为False

       1、上面的参数来自于文档,最基本的参数是input_size, hidden_size, num_layer三个。input_size:输入数据向量维度,在这里为28;hidden_size:隐藏层特征维度,也是输出的特征维度,这里是128;num_layers:lstm模块个数,这里是2。

       2、h0和c0的初始化维度为(num_layer,batch_size, hidden_size

       3、lstm的输出有out和(hn,cn),其中out.shape = torch.Size([128, 28, 128]),对应(batch_size,时序数,隐藏特征维度),也就是保存了28个时序的输出特征,因为做的分类,所以只需要最后的输出特征。所以取出最后的输出特征,进行全连接计算,全连接计算的输出维度为10(10分类)。

       4、batch_first这个参数比较特殊:如果为true,那么输入数据的维度为(batch, seq, feature),否则为(seq, batch, feature)

       5、num_layers:lstm模块个数,如果有两个,那么第一个模块的输出会变成第二个模块的输入。

       总结:构建一个LSTM模型要用到的参数,(输入数据的特征维度,隐藏层的特征维度,lstm模块个数);时序的个数体现在X中, X.shape = (batch_size,  时序长度, 数据向量维度)。

       可以理解为LSTM可以根据我们的输入来实现自动的时序匹配,从而达到输入长短不同的功能。

class RNN(nn.Module):def __init__(self, input_size,hidden_size,num_layers, num_classes):super(RNN, self).__init__()self.hidden_size = hidden_sizeself.num_layers = num_layers#input_size - 输入特征维度#hidden_size - 隐藏状态特征维度#num_layers - 层数(和时序展开要区分开),lstm模块的个数#batch_first为true,输入和输出的形状为(batch, seq, feature),true意为将batch_size放在第一维度,否则放在第二维度self.lstm = nn.LSTM(input_size,hidden_size,num_layers,batch_first = True)  self.fc = nn.Linear(hidden_size, num_classes)def forward(self,x):#参数:LSTM单元个数, batch_size, 隐藏层单元个数 h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)   #h0.shape = (2, 128, 128)c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)#输出output :  (seq_len, batch, hidden_size * num_directions)#(h_n, c_n):最后一个时间步的隐藏状态和细胞状态#对out的理解:维度batch, eq_len, hidden_size,其中保存着每个时序对应的输出,所以全连接部分只取最后一个时序的#out第一维batch_size,第二维时序的个数,第三维隐藏层个数,所以和lstm单元的个数是无关的out,_ = self.lstm(x, (h0, c0))  #shape = torch.Size([128, 28, 128])out = self.fc(out[:,-1,:])  #因为batch_first = true,所以维度顺序batch, eq_len, hidden_sizereturn out

 训练部分

model = RNN(input_size,hidden_size, num_layers, num_classes).to(device)
print(model)#RNN(
#  (lstm): LSTM(28, 128, num_layers=2, batch_first=True)
#  (fc): Linear(in_features=128, out_features=10, bias=True)
#)criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)total_step = len(train_loader)
for epoch in range(num_epochs):for i,(images, labels) in enumerate(train_loader):#batch_size = -1, 序列长度 = 28, 数据向量维度 = 28images = images.reshape(-1, sequence_length, input_size).to(device)labels = labels.to(device)# Forward passoutputs = model(images)loss = criterion(outputs, labels)# Backward and optimizeoptimizer.zero_grad()loss.backward() optimizer.step()if (i+1) % 100 == 0:print(outputs.shape)print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

# Test the model
with torch.no_grad():correct = 0total = 0for images, labels in test_loader:images = images.reshape(-1, sequence_length, input_size).to(device)labels = labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) 

http://www.khdw.cn/news/51180.html

相关文章:

  • 泰安做网站公司友情链接是什么意思
  • 企业网站的建立意义整站seo技术搜索引擎优化
  • 太原建站模板广告营销顾问
  • 四川网站建设公司做企业网站哪个平台好
  • seo人员招聘seo网站有优化培训班吗
  • 荆州网站开发临沂网站建设公司哪家好
  • 辽宁网站建站app拉新推广赚佣金
  • 杭州网站建设商城价格站长网站优化公司
  • 网页制作有什么软件上海网站seo外包
  • 做网站可以临摹吗seo推广公司招商
  • 公司做网站提供产品加盟费成品网站货源1
  • 做的网站上更改内容改怎么回事服务网站推广方案
  • 小程序代运营多少钱一个月seochinazcom
  • 营销系统软件郑州seo外包费用
  • 网站建设需求指引关键词歌曲歌词
  • 响应式网站的登录设置长尾关键词挖掘站长工具
  • 微信网站搭建公司海曙seo关键词优化方案
  • 网站建设实施流程百度怎么发帖做推广
  • 永久免费企业建站官网大全万网的app叫什么
  • 河南能源企业网站建设宁波seo网络推广
  • 青岛城乡建设局网站首页怎么建网站赚钱
  • 专门做签到的网站系统优化软件哪个最好的
  • 网站免费推广平台有哪些网站维护是做什么的
  • 大连华南网站制作公司品牌推广和营销推广
  • 百度做的网站国外可以打开吗本网站三天换一次域名
  • 3d视频动画制作广州seo公司如何
  • 互联网科技公司做网站哪家好公司网站制作网络公司
  • 做市场调查的网站2023年5月份病毒感染情况
  • 虚拟主机做视频网站可以吗抖音广告推广怎么收费
  • 军事新闻网最新新闻海外seo网站推广