当前位置: 首页 > news >正文

做网站写代码流程网络广告一般是怎么收费

做网站写代码流程,网络广告一般是怎么收费,在家做兼职的网站,商标注册核名查询系统PySpark MLlib 特征处理详解 PySpark MLlib 提供了丰富的特征处理工具,帮助我们进行特征提取、转换和选择。以下是 PySpark MLlib 中常用的特征处理类及其简要介绍。 1. Binarizer Binarizer 是将连续特征二值化的转换器。 from pyspark.ml.feature import Bina…

PySpark MLlib 特征处理详解

PySpark MLlib 提供了丰富的特征处理工具,帮助我们进行特征提取、转换和选择。以下是 PySpark MLlib 中常用的特征处理类及其简要介绍。

1. Binarizer

Binarizer 是将连续特征二值化的转换器。

from pyspark.ml.feature import Binarizerbinarizer = Binarizer(threshold=0.5, inputCol="feature", outputCol="binarized_feature")
binarizedData = binarizer.transform(data)

2. BucketedRandomProjectionLSH

BucketedRandomProjectionLSH 是基于欧几里得距离度量的 LSH 类。

from pyspark.ml.feature import BucketedRandomProjectionLSHbrp = BucketedRandomProjectionLSH(inputCol="features", outputCol="hashes", bucketLength=2.0)
model = brp.fit(data)
transformedData = model.transform(data)

3. Bucketizer

Bucketizer 将连续特征映射到特征桶。

from pyspark.ml.feature import Bucketizersplits = [-float("inf"), 0.0, float("inf")]
bucketizer = Bucketizer(splits=splits, inputCol="feature", outputCol="bucketed_feature")
bucketedData = bucketizer.transform(data)

4. ChiSqSelector

ChiSqSelector 是卡方特征选择器,选择预测分类标签的分类特征。

from pyspark.ml.feature import ChiSqSelectorselector = ChiSqSelector(numTopFeatures=50, featuresCol="features", labelCol="label", outputCol="selected_features")
result = selector.fit(data).transform(data)

5. CountVectorizer

CountVectorizer 从文档集合中提取词汇,并生成 CountVectorizerModel。

from pyspark.ml.feature import CountVectorizercv = CountVectorizer(inputCol="text", outputCol="features", vocabSize=10000, minDF=5)
model = cv.fit(data)
vectorizedData = model.transform(data)

6. DCT

DCT 是对实数向量进行一维离散余弦变换的特征转换器。

from pyspark.ml.feature import DCTdct = DCT(inverse=False, inputCol="features", outputCol="dct_features")
dctData = dct.transform(data)

7. ElementwiseProduct

ElementwiseProduct 对每个输入向量与提供的“权重”向量进行 Hadamard 乘积(即逐元素乘积)。

from pyspark.ml.feature import ElementwiseProduct
from pyspark.ml.linalg import VectorsscalingVec = Vectors.dense([0.0, 1.0, 2.0])
transformer = ElementwiseProduct(scalingVec=scalingVec, inputCol="features", outputCol="scaled_features")
scaledData = transformer.transform(data)

8. FeatureHasher

FeatureHasher 将一组分类或数值特征投影到指定维度的特征向量中。

from pyspark.ml.feature import FeatureHasherhasher = FeatureHasher(inputCols=["cat1", "cat2", "num1"], outputCol="features")
hashedData = hasher.transform(data)

9. HashingTF

HashingTF 使用哈希技巧将词序列映射到它们的词频。

from pyspark.ml.feature import HashingTFhashingTF = HashingTF(inputCol="text", outputCol="features", numFeatures=10000)
tfData = hashingTF.transform(data)

10. IDF

IDF 计算文档集合的逆文档频率(IDF)。

from pyspark.ml.feature import IDFidf = IDF(inputCol="raw_features", outputCol="features", minDocFreq=5)
model = idf.fit(tfData)
tfidfData = model.transform(tfData)

11. Imputer

Imputer 使用列中的均值、中位数或众数来填补缺失值。

from pyspark.ml.feature import Imputerimputer = Imputer(inputCols=["feature1", "feature2"], outputCols=["imputed_feature1", "imputed_feature2"])
model = imputer.fit(data)
imputedData = model.transform(data)

12. IndexToString

IndexToString 将索引列映射回相应的字符串值列。

from pyspark.ml.feature import IndexToStringconverter = IndexToString(inputCol="index", outputCol="string", labels=["a", "b", "c"])
convertedData = converter.transform(data)

13. Interaction

Interaction 实现特征交互转换。

from pyspark.ml.feature import Interactioninteraction = Interaction(inputCols=["col1", "col2"], outputCol="interacted_col")
interactedData = interaction.transform(data)

14. MaxAbsScaler

MaxAbsScaler 通过除以每个特征的最大绝对值来单独缩放每个特征到范围 [-1, 1]。

from pyspark.ml.feature import MaxAbsScalerscaler = MaxAbsScaler(inputCol="features", outputCol="scaled_features")
model = scaler.fit(data)
scaledData = model.transform(data)

15. MinHashLSH

MinHashLSH 是基于 Jaccard 距离的 LSH 类。

from pyspark.ml.feature import MinHashLSHmh = MinHashLSH(inputCol="features", outputCol="hashes", numHashTables=3)
model = mh.fit(data)
transformedData = model.transform(data)

16. MinMaxScaler

MinMaxScaler 使用列摘要统计数据,将每个特征单独线性缩放到 [min, max] 范围内,也称为最小-最大归一化或重缩放。

from pyspark.ml.feature import MinMaxScalerscaler = MinMaxScaler(inputCol="features", outputCol="scaled_features")
model = scaler.fit(data)
scaledData = model.transform(data)

17. NGram

NGram 是一个特征转换器,它将输入的字符串数组转换为 n-grams 数组。

from pyspark.ml.feature import NGramngram = NGram(n=2, inputCol="words", outputCol="ngrams")
ngramData = ngram.transform(data)

18. Normalizer

Normalizer 使用给定的 p-范数将向量规范化为单位范数。

from pyspark.ml.feature import Normalizernormalizer = Normalizer(p=1.0, inputCol="features", outputCol="norm_features")
normData = normalizer.transform(data)

19. OneHotEncoder

OneHotEncoder 将分类索引列映射到二进制向量列。

from pyspark.ml.feature import OneHotEncoderencoder = OneHotEncoder(inputCol="index", outputCol="onehot")
encodedData = encoder.transform(data)

20. PCA

PCA 训练一个模型,将向量投影到前 k 个主成分的低维空间中。

from pyspark.ml.feature import PCApca = PCA(k=3, inputCol="features", outputCol="pca_features")
model = pca.fit(data)
pcaData = model.transform(data)

21. PolynomialExpansion

PolynomialExpansion 在多项式空间中进行特征扩展。

from pyspark.ml.feature import PolynomialExpansionpolyExpansion = PolynomialExpansion(degree=2, inputCol="features", outputCol="poly_features")
polyData = polyExpansion.transform(data)

22. QuantileDiscretizer

QuantileDiscretizer 将连续特征列离散化为分类特征列。

from pyspark.ml.feature import QuantileDiscretizerdiscretizer = QuantileDiscretizer(numBuckets=3, inputCol="feature", outputCol="bucketed_feature")
bucketedData = discretizer.fit(data).transform(data)

23. RobustScaler

RobustScaler 移除中位数并根据四分位范围缩放数据。

from pyspark.ml.feature import RobustScalerscaler = RobustScaler(inputCol="features", outputCol="scaled_features")
model = scaler.fit(data)
scaledData = model.transform(data)

24. RegexTokenizer

RegexTokenizer 是一个基于正则表达式的分词器,可以使用提供的正则表达式模式(默认为分隔模式)提取标记,或反复匹配正则表达式(如果 gaps 为 false)。

from pyspark.ml.feature import RegexTokenizertokenizer = RegexTokenizer(inputCol="text", outputCol="words", pattern="\\W")
tokenizedData = tokenizer.transform(data)

25. RFormula

RFormula 实现了对数据集进行拟合所需的转换,使用 R 模型公式。

from pyspark.ml.feature import RFormulaformula = RFormula(formula="y ~ x1 + x2", featuresCol="features", labelCol="label")
formulaData = formula.fit(data).transform(data)

26. SQLTransformer

SQLTransformer 实现了由 SQL 语句定义的转换。

from pyspark.ml.feature import SQLTransformersqlTrans = SQLTransformer(statement="SELECT *, (col1 + col2) AS new_col FROM __THIS__")
transformedData = sqlTrans.transform(data)

27. StandardScaler

StandardScaler 使用训练集中的样本列摘要统计数据,通过去均值和按单位方差缩放来标准化特征。

from pyspark.ml.feature import StandardScalerscaler = StandardScaler(inputCol="features", outputCol="scaled_features", withMean=True, withStd=True)
model = scaler.fit(data)
scaledData = model.transform(data)

28. StopWordsRemover

StopWordsRemover 是一个特征转换器,用于从输入中过滤停用词。

from pyspark.ml.feature import StopWordsRemoverremover = StopWordsRemover(inputCol="raw", outputCol="filtered")
filteredData = remover.transform(data)

29. StringIndexer

StringIndexer 是一个标签索引器,将字符串标签列映射到标签索引列。

from pyspark.ml.feature import StringIndexerindexer = StringIndexer(inputCol="category", outputCol="categoryIndex")
indexedData = indexer.fit(data).transform(data)

30. Tokenizer

Tokenizer 是一个分词器,将输入字符串转换为小写,然后按空格拆分。

from pyspark.ml.feature import Tokenizertokenizer = Tokenizer(inputCol="text", outputCol="words")
tokenizedData = tokenizer.transform(data)

31. UnivariateFeatureSelector

UnivariateFeatureSelector 基于单变量统计测试选择特征。

from pyspark.ml.feature import UnivariateFeatureSelectorselector = UnivariateFeatureSelector(featuresCol="features", labelCol="label", selectionMode="numTopFeatures", selectionThreshold=50)
selectedData = selector.fit(data).transform(data)

32. VarianceThresholdSelector

VarianceThresholdSelector 删除所有低方差特征的特征选择器。

from pyspark.ml.feature import VarianceThresholdSelectorselector = VarianceThresholdSelector(featuresCol="features", varianceThreshold=0.1, outputCol="selected_features")
selectedData = selector.fit(data).transform(data)

33. VectorAssembler

VectorAssembler 是一个特征转换器,将多个列合并为一个向量列。

from pyspark.ml.feature import VectorAssemblerassembler = VectorAssembler(inputCols=["col1", "col2", "col3"], outputCol="features")
assembledData = assembler.transform(data)

34. VectorIndexer

VectorIndexer 是用于对数据集中 Vector 的分类特征列进行索引的类。

from pyspark.ml.feature import VectorIndexerindexer = VectorIndexer(inputCol="features", outputCol="indexed_features", maxCategories=10)
indexerModel = indexer.fit(data)
indexedData = indexerModel.transform(data)

35. VectorSizeHint

VectorSizeHint 是一个特征转换器,向向量列的元数据添加大小信息。

from pyspark.ml.feature import VectorSizeHintsizeHint = VectorSizeHint(inputCol="features", size=3)
hintedData = sizeHint.transform(data)

36. VectorSlicer

VectorSlicer 是一个类,接收一个特征向量,并输出一个新的特征向量,其中包含原始特征的子数组。

from pyspark.ml.feature import VectorSlicerslicer = VectorSlicer(inputCol="features", outputCol="sliced_features", indices=[1, 2])
slicedData = slicer.transform(data)

37. Word2Vec

Word2Vec 训练一个 Map(String, Vector) 的模型,即将字词映射到向量。

from pyspark.ml.feature import Word2Vecword2Vec = Word2Vec(inputCol="text", outputCol="result", vectorSize=3, minCount=0)
model = word2Vec.fit(data)
resultData = model.transform(data)

以下是 PySpark MLlib 中部分特征处理方法的详细介绍,包括它们所基于的公式、适用的场景以及一些具体的应用案例。

1. Binarizer

公式
Binarizer ( x ) = { 1 if  x > threshold 0 otherwise \text{Binarizer}(x) = \begin{cases} 1 & \text{if } x > \text{threshold} \\ 0 & \text{otherwise} \end{cases} Binarizer(x)={10if x>thresholdotherwise

适用场景
用于将连续特征转换为二值特征,常用于分类问题中将数值特征转换为二进制特征。

案例

from pyspark.ml.feature import Binarizerdata = spark.createDataFrame([(0.1,), (0.8,), (0.5,)], ["feature"])
binarizer = Binarizer(threshold=0.5, inputCol="feature", outputCol="binarized_feature")
binarizedData = binarizer.transform(data)
binarizedData.show()

2. Bucketizer

公式
将连续特征分成离散的桶,例如使用指定的分割点将特征值分段:
Bucketizer ( x ) = { 0 if  x ≤ splits [ 1 ] 1 if splits [ 1 ] < x ≤ splits [ 2 ] ⋮ ⋮ N − 1 if  x > splits [ N − 1 ] \text{Bucketizer}(x) = \begin{cases} 0 & \text{if } x \leq \text{splits}[1] \\ 1 & \text{if } \text{splits}[1] < x \leq \text{splits}[2] \\ \vdots & \vdots \\ N-1 & \text{if } x > \text{splits}[N-1] \end{cases} Bucketizer(x)= 01N1if xsplits[1]if splits[1]<xsplits[2]if x>splits[N1]

适用场景
用于将连续特征转换为离散的分桶特征,常用于决策树等算法中。

案例

from pyspark.ml.feature import Bucketizerdata = spark.createDataFrame([(0.1,), (0.8,), (0.5,)], ["feature"])
splits = [-float("inf"), 0.5, float("inf")]
bucketizer = Bucketizer(splits=splits, inputCol="feature", outputCol="bucketed_feature")
bucketedData = bucketizer.transform(data)
bucketedData.show()

3. ChiSqSelector

公式
根据卡方检验的统计量选择特征:
χ 2 = ∑ ( O i − E i ) 2 E i \chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} χ2=Ei(OiEi)2
其中 (O_i) 是观察频数,(E_i) 是期望频数。

适用场景
用于特征选择,特别是用于分类问题中的分类特征选择。

案例

from pyspark.ml.feature import ChiSqSelector
from pyspark.ml.linalg import Vectorsdata = spark.createDataFrame([(Vectors.dense([0.0, 0.5, 0.5]), 1.0),(Vectors.dense([0.1, 0.8, 0.2]), 0.0),(Vectors.dense([0.2, 0.9, 0.1]), 0.0)
], ["features", "label"])selector = ChiSqSelector(numTopFeatures=2, featuresCol="features", labelCol="label", outputCol="selected_features")
result = selector.fit(data).transform(data)
result.show()

4. CountVectorizer

公式
计算词汇表并生成词频向量:
CountVectorizer ( D ) = [ TF ( t 1 , D ) , TF ( t 2 , D ) , … , TF ( t n , D ) ] \text{CountVectorizer}(D) = [ \text{TF}(t_1, D), \text{TF}(t_2, D), \ldots, \text{TF}(t_n, D) ] CountVectorizer(D)=[TF(t1,D),TF(t2,D),,TF(tn,D)]
其中 (\text{TF}(t_i, D)) 是词 (t_i) 在文档 (D) 中的词频。

适用场景
用于文本数据的词频特征提取,常用于自然语言处理和文本分类任务。

案例

from pyspark.ml.feature import CountVectorizerdata = spark.createDataFrame([(0, "a b c".split(" ")), (1, "a b b c a".split(" "))], ["id", "words"])
cv = CountVectorizer(inputCol="words", outputCol="features", vocabSize=3, minDF=1)
model = cv.fit(data)
vectorizedData = model.transform(data)
vectorizedData.show()

5. DCT

公式
离散余弦变换 (DCT):
X k = ∑ n = 0 N − 1 x n cos ⁡ [ π N ( n + 1 2 ) k ] X_k = \sum_{n=0}^{N-1} x_n \cos \left[ \frac{\pi}{N} \left( n + \frac{1}{2} \right) k \right] Xk=n=0N1xncos[Nπ(n+21)k]

适用场景
用于信号处理中的特征转换,如图像处理和压缩。

案例

from pyspark.ml.feature import DCT
from pyspark.ml.linalg import Vectorsdata = spark.createDataFrame([(Vectors.dense([0.0, 1.0, -2.0, 3.0]),)], ["features"])
dct = DCT(inverse=False, inputCol="features", outputCol="dct_features")
dctData = dct.transform(data)
dctData.show()

6. Imputer

公式
缺失值填充,使用均值、中位数或众数填充:
Imputer ( x ) = { x if  x ≠ NaN mean/median/mode ( X ) if  x = NaN \text{Imputer}(x) = \begin{cases} x & \text{if } x \neq \text{NaN} \\ \text{mean/median/mode}(X) & \text{if } x = \text{NaN} \end{cases} Imputer(x)={xmean/median/mode(X)if x=NaNif x=NaN

适用场景
用于处理数据集中的缺失值。

案例

from pyspark.ml.feature import Imputerdata = spark.createDataFrame([(1.0, float("nan")), (2.0, 3.0), (float("nan"), 4.0)], ["a", "b"])
imputer = Imputer(inputCols=["a", "b"], outputCols=["imputed_a", "imputed_b"])
model = imputer.fit(data)
imputedData = model.transform(data)
imputedData.show()

7. OneHotEncoder

公式
将分类特征转换为独热编码向量:
OneHotEncoder ( x ) = [ 0 , … , 1 , … , 0 ] \text{OneHotEncoder}(x) = [0, \ldots, 1, \ldots, 0] OneHotEncoder(x)=[0,,1,,0]
其中1出现在类别索引位置。

适用场景
用于将分类特征转换为机器学习算法可以直接使用的数值特征。

案例

from pyspark.ml.feature import OneHotEncoder, StringIndexerdata = spark.createDataFrame([("a",), ("b",), ("a",)], ["category"])
indexer = StringIndexer(inputCol="category", outputCol="categoryIndex")
indexed = indexer.fit(data).transform(data)
encoder = OneHotEncoder(inputCol="categoryIndex", outputCol="categoryVec")
encoded = encoder.fit(indexed).transform(indexed)
encoded.show()

8. PCA

公式
主成分分析 (PCA):
X = T P T \mathbf{X} = \mathbf{T} \mathbf{P}^T X=TPT
其中 (\mathbf{T}) 是得分矩阵,(\mathbf{P}) 是载荷矩阵。

适用场景
用于降维,提取主要特征,减少数据集的维度。

案例

from pyspark.ml.feature import PCA
from pyspark.ml.linalg import Vectorsdata = spark.createDataFrame([(Vectors.dense([1.0, 0.0, 0.0]),), (Vectors.dense([0.0, 1.0, 0.0]),), (Vectors.dense([0.0, 0.0, 1.0]),)], ["features"])
pca = PCA(k=2, inputCol="features", outputCol="pca_features")
model = pca.fit(data)
pcaData = model.transform(data)
pcaData.show()

9. StandardScaler

公式
标准化特征,去均值并按标准差缩放:
StandardScaler ( x ) = x − mean ( x ) std ( x ) \text{StandardScaler}(x) = \frac{x - \text{mean}(x)}{\text{std}(x)} StandardScaler(x)=std(x)xmean(x)

适用场景
用于特征标准化,使不同特征具有相同的尺度,适用于大多数机器学习算法。

案例

from pyspark.ml.feature import StandardScaler
from pyspark.ml.linalg import Vectorsdata = spark.createDataFrame([(Vectors.dense([1.0, 0.1, -1.0]),), (Vectors.dense([2.0, 1.1, 1.0]),), (Vectors.dense([4.0, 10.1, 2.0]),)], ["features"])
scaler = StandardScaler(inputCol="features", outputCol="scaled_features", withMean=True, withStd=True)
model = scaler.fit(data)
scaledData = model.transform(data)
scaledData.show()
``
## 总结PySpark MLlib 中的特征处理工具丰富且功能强大,可以帮助我们在数据预处理阶段完成各种特征工程任务。这些工具覆盖了特征的二值化、离散化、标准化、归一化、编码、转换、选择和生成等多个方面,是数据科学家和工程师进行机器学习模型训练的重要帮手。通过合理使用这些工具,可以极大提升模型的性能和效果。
http://www.khdw.cn/news/48715.html

相关文章:

  • 南宁网站制作百度一下搜索一下
  • 手表网站推荐百度关键词分析
  • 小域名 网站备案群排名优化软件官网
  • 遵义公司做网站保健品的营销及推广方案
  • 网站开发论文靠谱不浏览器下载安装2022最新版
  • wordpress 文章的各种调用东莞百度快速排名优化
  • 把照片做成视频贵州seo推广
  • ui做的好的网站浅谈一下网络营销的几个误区
  • 做微商好还是开网站好前端优化网站
  • 山东饰品行业网站制作无锡百度推广平台
  • asp加dw做网站樱桃磁力bt天堂
  • 社交网站建设教程新网站seo
  • 网站备案每年一次吗seo研究中心骗局
  • 沈阳网站设计营销型网站推广联盟
  • 精湛的网站建设排行榜注册网站怎么注册
  • 网站备案被注销吗网站信息
  • 海星wap建站百度怎么注册公司网站
  • 网站技巧高权重外链
  • 优质网站建设在哪里北京网站推广
  • 商城网页制作上海优化外包公司排名
  • 旅游网站设计方案上海市人大常委会
  • 杭州 城西 做网站代刷网站推广免费
  • wordpress 做成app外贸网站如何推广优化
  • 有模块传奇网站怎么做某产品网络营销推广方案
  • 网站内页怎么做seo慧达seo免登录发布
  • 扬州市邗江区疫情最新消息百度优化排名
  • 网站免费响应建设男生技能培训班有哪些
  • java做的网站怎么设置关闭和开启网站访问短视频seo是什么
  • 利用业务时间做的网站与公司有关吗seo分析与优化实训心得
  • 怎么用手机制作手机网站网络营销的营销理念