当前位置: 首页 > news >正文

apmserve设置多个网站谷歌在线浏览器入口

apmserve设置多个网站,谷歌在线浏览器入口,阿里巴巴做网站申请,学做网站要学什么软件使用一个大语言模型对另一个大语言模型进行“调教”(通常称为微调或适配),是一种常见的技术手段,用于让目标模型更好地适应特定的任务、领域或风格。以下是基于搜索结果整理的详细步骤和方法: 1.准备工作 安装必要的…

使用一个大语言模型对另一个大语言模型进行“调教”(通常称为微调或适配),是一种常见的技术手段,用于让目标模型更好地适应特定的任务、领域或风格。以下是基于搜索结果整理的详细步骤和方法:

1.准备工作

安装必要的库

• Transformers:用于加载和训练模型。

• Datasets:用于处理数据集。

• PEFT:用于微调,特别是LoRA(Low-Rank Adaptation)等技术。

• Accelerate:用于优化训练过程。

• ModelScope:用于下载和加载模型(国内用户)。

• SwanLab:用于可视化训练过程。

pip install transformers datasets peft accelerate modelscope swanlab

2.数据准备

下载数据集
使用datasets库下载或加载数据集。如果数据集较大或需要本地存储,可以手动下载并加载。

from datasets import load_dataset# 如果数据集在 Hugging Face 上
dataset = load_dataset("your_dataset_name", split="train")# 如果数据集在本地
dataset = load_dataset("json", data_files="path/to/your/dataset.json", split="train")

数据预处理
将数据集转换为适合模型输入的格式。通常需要对文本进行分词,并将标签转换为模型可理解的格式。

from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained("base_model_name")
MAX_LENGTH = 512  # 根据显存调整def preprocess_function(examples):inputs = tokenizer(examples["text"], truncation=True, max_length=MAX_LENGTH)labels = tokenizer(examples["label"], truncation=True, max_length=MAX_LENGTH)return {"input_ids": inputs["input_ids"],"attention_mask": inputs["attention_mask"],"labels": labels["input_ids"]}tokenized_dataset = dataset.map(preprocess_function, batched=True)

3.模型准备

下载并加载基础模型
使用transformers库加载基础模型。如果使用国内模型,可以通过ModelScope下载。

from transformers import AutoModelForCausalLM, AutoTokenizerbase_model = "base_model_name"  # 替换为实际模型名称
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(base_model)

设置量化配置
如果需要在低显存设备上运行,可以对模型进行量化。

from transformers import BitsAndBytesConfigquant_config = BitsAndBytesConfig(load_in_4bit=True,bnb_4bit_quant_type="nf4",bnb_4bit_compute_dtype=torch.float16,bnb_4bit_use_double_quant=False,
)
model = AutoModelForCausalLM.from_pretrained(base_model, quantization_config=quant_config)

应用LoRA配置
LoRA 是一种高效的微调方法,适用于大模型。

from peft import LoraConfig, TaskType, get_peft_modellora_config = LoraConfig(task_type=TaskType.CAUSAL_LM,target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],inference_mode=False,r=8,  # LoRA 的秩lora_alpha=32,lora_dropout=0.1
)
model = get_peft_model(model, lora_config)

4.训练模型

设置训练参数
使用transformersTrainingArguments设置训练参数。

from transformers import TrainingArgumentstraining_args = TrainingArguments(output_dir="./results",num_train_epochs=3,per_device_train_batch_size=4,gradient_accumulation_steps=4,learning_rate=2e-4,save_steps=500,logging_steps=500,evaluation_strategy="steps",eval_steps=500,save_total_limit=2,load_best_model_at_end=True,metric_for_best_model="accuracy",greater_is_better=True,save_on_each_node=True,bf16=True,  # 如果使用 Ampere 架构以下的显卡,可以使用 fp16
)

创建训练器
使用transformersTrainerSFTTrainer进行训练。

from transformers import Trainertrainer = Trainer(model=model,args=training_args,train_dataset=tokenized_dataset,tokenizer=tokenizer,
)
trainer.train()

5.保存和加载模型

保存模型
训练完成后,保存模型和分词器。

model.save_pretrained("path/to/save/model")
tokenizer.save_pretrained("path/to/save/tokenizer")

加载模型
加载保存的模型进行推理。

from transformers import AutoModelForCausalLM, AutoTokenizermodel = AutoModelForCausalLM.from_pretrained("path/to/save/model")
tokenizer = AutoTokenizer.from_pretrained("path/to/save/tokenizer")# 进行推理
prompt = "Who is Leonardo Da Vinci?"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
output = model.generate(input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))

6.使用 LangChain 进行 Prompt 工程
如果需要进一步优化模型的输出,可以使用 LangChain 框架进行 Prompt 工程。通过设计合适的提示词模板和输入输出接口,可以显著提升模型的性能。

from langchain.prompts import PromptTemplate
from langchain.llms import LLM# 创建提示词模板
template = """你是一个专业的{domain}专家,回答以下问题:
{question}
"""
prompt = PromptTemplate(input_variables=["domain", "question"], template=template)# 使用模型进行推理
llm = LLM(model=model, tokenizer=tokenizer)
response = llm(prompt.format(domain="历史", question="谁是达芬奇?"))
print(response)

7.可视化训练过程
使用 SwanLab 记录训练过程并可视化。

from swanlab.integration.huggingface import SwanLabCallbacktrainer = Trainer(model=model,args=training_args,train_dataset=tokenized_dataset,tokenizer=tokenizer,callbacks=[SwanLabCallback()],
)
trainer.train()

总结
通过上述步骤,你可以使用一个大语言模型对另一个大语言模型进行微调,使其更好地适应特定的任务或领域。微调的关键在于数据准备、模型选择、量化配置、LoRA 应用以及训练参数的设置。此外,LangChain 框架可以进一步优化模型的输出,提升其在实际应用中的表现。

http://www.khdw.cn/news/48275.html

相关文章:

  • 网站跟网页的区别是什么意思成crm软件
  • 成都住房和城乡建设局 网站北京网站制作
  • 北京广告张掖seo
  • 广州市住房城乡建设局网站成都官网seo费用
  • 苹果手机做网站服务器开一个网站需要多少钱
  • 网站备案地址seo顾问公司
  • 8个公开大数据网站手机百度网址大全首页
  • 珠海做网站优化推广关键词优化
  • 网站建设网易网络热词缩写
  • 高端网站定制开发百度seo排名规则
  • 各省备案网站百度pc端网页版
  • seo岗位职责seo实战密码第三版pdf
  • 网店转让镇江关键字优化公司
  • 武汉光谷律师什么优化
  • 网站价格套餐seo免费
  • 免费培训学校网站源码怎么建立个人网站
  • 现在建设网站落后了百度做广告费用
  • 电子商务网站建设基础步骤优化设计的答案
  • 安徽网站建设方案优化重庆关键词优化
  • 招聘网站建设怎么设计网站
  • 微商城网站建设方案北京百度快速优化排名
  • 网站设计中新闻版块怎么做长安网站优化公司
  • 优化企业门户网站发软文的网站
  • 腾讯云主机做网站百度推广一个月多少钱
  • 如何做视频网站 需要注意的地方外贸企业网站推广
  • 黔江城乡建设委员会的网站职业技能培训机构
  • 如何把自己做的网站放到微信上网页设计首页制作
  • 马大姐网站建设目的必应搜索引擎国际版
  • 网络网站是多少钱一年郑州抖音seo
  • 北京做网站比较有名的公司有哪些2345网址导航用户中心